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MATH 105: Midterm #1 Practice
Problems

1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the
statement is true, explain why, using concepts and results from class to justify your
answer. If the statement is false, give a counterexample.

(a) [4 points] Suppose the graph of a function f has the following properties: The trace
in the plane z = c is empty when c < 0, is a single point when c = 0, and is a circle
when c > 0. Then the graph of f is a cone that opens upward.

(b) [4 points] If f(x, y) is any function of two variables, then no two level curves of f
can intersect.

(c) [4 points] Suppose P1, P2, and P3 are three planes in R3. If P1 and P2 are both
orthogonal to P3, then P1 and P2 are parallel to each other.
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(d) [4 points] If f(x, y) has continuous partial derivatives of all orders, then fxxy = fyxx
at every point in R2.

(e) [4 points] Suppose that f is defined and differentiable on all of R2. If there are no
critical points of f , then f does not have a global maximum on R2.
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2. [5 points] Consider the function f(x, y) = ey−x
2−1. Find the equation of the level curve

of f that passes through the point (2, 5). Then sketch this curve, clearly labeling the
point (2, 5).
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3. Let f(x, y) = (1− 2y)(x2 − xy).

(a) [5 points] Compute the partial derivatives fx and fy.

(b) [5 points] Using your answer to (a), find all the critical points of f .
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(c) [5 points] Apply the second derivative test to label each of the points found in (b)
as a local minimum, local maximum, saddle point, or inconclusive.
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4. [15 points] Find the point (x, y, z) on the plane x − 2y + 2z = 3 that is closest to the
origin. Show your work and explain your steps.
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5. (a) [5 points] In your own words, explain what it means for a function f(x, y) to have
a saddle point at (a, b).

(b) [5 points] The function f(x, y) = x5 − x2y3 + y7 + 11 has a critical point at (0, 0).
(You may assume this without checking it.) Show that (0, 0) is a saddle point of f .
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6. [10 points] Find the absolute maximum value of the function f(x, y) = xy2 on the
region R consisting of those points (x, y) with x2 +y2 ≤ 4 and x ≥ 0, y ≥ 0. (So R is the
portion of the disk of radius 2 centered at the origin which belongs to the first quadrant,
boundary points included.) Show your work and explain which methods from class you
use.
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7. [10 points] A firm makes x units of product A and y units of product B and has a
production possibilities curve given by the equation x2 + 25y2 = 25000 for x ≥ 0, y ≥ 0.
Suppose profits are $3 per unit for product A and $5 per unit for product B. Find the
production schedule (i.e. the values of x and y) that maximizes the total profit.
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8. In this problem, we guide you through the computation of the area underneath one hump
of the curve y = sinx.

(a) [5 points] Write down the right-endpoint Riemann sum for the area under the
graph of y = sinx from x = 0 to x = π, using n subintervals.

(b) [10 points] Now assume the validity of the following formula (for each real number
θ):

n∑
k=1

sin(kθ) =
sin(nθ/2)

sin(θ/2)
sin(

1

2
(n+ 1)θ).

Using this formula, compute the limit as n → ∞ of the expression found in part
(a) and thus evaluate the area exactly. [Hint: The identity sin(π

2
+ π

2n
) = cos( π

2n
)

may be useful.]


