Math 105 Assignment 6 Solutions

1. (5 points) Find an equation for a plane P which is parallel to $3 x+y+z=9$, and contains the point $(1,5,6)$.

Solution: The plane $3 x+y+z=9$ has normal vector $\mathbf{n}=(3,1,1)$, so if P is parellel to this plane, then \mathbf{n} is a normal vector for P.

The equation for a plane P passing through $(1,5,6)$ with normal vector $(3,1,1)$ is $3(x-1)+(y-5)+(z-6)=0$, or $3 x+y+z=14$.
2.a (3 points) Let $f(x, y)=100 x^{\frac{1}{3}} y^{\frac{2}{3}}$, and let C be a positive constant. Express the level curve $f(x, y)=C$ as the graph of a function $y=g(x)$.

Solution: We take the equation $100 x^{\frac{1}{3}} y^{\frac{2}{3}}=C$ and isolate y.
First we rearrange to get $y^{\frac{2}{3}}=\frac{C}{100} x^{\frac{-1}{3}}$. Cubing each side gives $y^{2}=\frac{1}{100^{3}} C^{3} x^{-1}$.
Now taking square roots, we get two branches of y as a function of x for the positive and negative square roots, $y=\frac{1}{1000} C^{\frac{3}{2}} x^{\frac{-1}{2}}$ and $y=-\frac{1}{1000} C^{\frac{3}{2}} x^{\frac{-1}{2}}$.
2.b (2 points) Describe the level curve $f(x, y)=C$ when $C=0$, and when $C<0$.

Solution: $f(x, y)=100 x^{\frac{1}{3}} y^{\frac{2}{3}}=0$ exactly when one of x or y is zero. The level curve is then the two lines $x=0$ and $y=0$ (a degenerate hyperbola).

When $f(x, y)=100 x^{\frac{1}{3}} y^{\frac{2}{3}}=C<0$, the level curve is the graph of the function $x=h(y)$, where $h(y)=\frac{1}{1000000} C^{3} y^{-2}$ (note that we can't take the square root of C like we did in part a).
3. (5 points) Determine whether or not the following limit exists:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y}{x^{2}-y} .
$$

Solution: The limit does not exist. Letting $f(x, y)=\frac{x^{2}+y}{x^{2}-y}$, we show that $f(x, y)$ approaches two different values as (x, y) approaches $(0,0)$ along two different paths.

Consider the limits approaching from the lines $y=0$ and $x=0$ from the positive x direction and positive y direction, respectively.

For the line $y=0$, we have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0^{+}} \frac{x^{2}-0}{x^{2}+0}=1
$$

For the line $x=0$, we have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{y \rightarrow 0^{+}} \frac{0^{2}-y}{0^{2}+y}=-1
$$

Since these are not the same, the limit can't exist.

