Answers to Exercises 12.1

1. $E(X)=4 / 5, V(X)=.16$, standard deviation $=.4$.
2. $E(X)=5 / 3, V(X)=4 / 9$, standard deviation $=2 / 3$.
3. (a) $V(X)=1$
(b) $V(X)=4$
(c) $V(X)=16$

As the difference between maximum and minimum values increases, so does the variance.
4. (a) $V(X)=2.6$
(b) $V(X)=5.8$

Values of (b) farther from $E(X)$ have higher probabilities, so the variance is larger.
5. (a)

Value	Probability
0	$11 / 52$
1	$26 / 32$
2	$13 / 52$
3	$2 / 52$

(b) $E(X)=29 / 26 \approx 1.12$.
(c) $E(X)$ is the average number of accidents per week in the given year.
6. (a)

Value	Probability
0	$30 / 60$
1	$20 / 60$
2	$10 / 60$

(b) $E(X)=2 / 3$
(c) $E(X)$ is the average number of calls coming into the switchboard each minute.
7. (a) 25
(b) $100 c^{2} \%$.
8. (a) $1 / 2$
(b) $1 / 4$
(c) $1 / 100$
(d) 0
9. If X is the grower's profit if the fruits are not protected, then $E(X)=$ $90,000<95,000$, so he should spend $\$ 5000$ to protect the fruit.
10. Let X be the random variable defined in the previous exercise. In this case $E(X)=96,000>95,000$, so the grower should not spend money to protect the fruit.

Answers to Exercises 12.2

For each of the problems 1-6, verify that the given function f is nonnegative, and that the area under the curve f and above the x axis is 1 .
7. $k=1 / 4$
7. $k=3 / 8$
7. $k=1 / 15$
7. $k=1 / 2$
7. $k=12$
7. $k=2 / 9$
15. $1 / 15$
25. . 24
35. $1 / 2$
45. 5/9
55. 3/4
65. $22 / 25$
75. $(x-1)^{-1 / 2} / 4$
85. $8 x^{-3} / 3$
95. $(x-2) / 5$
105. $F(x)=3 x / 2-x^{2} / 4-5 / 4$
115. (a) $19 / 63$
(b) $F(x)=\left(x^{3}-1\right) / 63$
(c) $F(3)-F(2)=19 / 63$.
125. (a) $5 / 27$
(b) $F(x)=2 x^{2} / 9-x^{3} / 27-5 / 27$
(c) $F(4)-F(3)=5 / 27$
31. $2-\sqrt{2}$
32. $M=10 \ln (1.1) / \ln 2$
33. $b=1.8$
34. $a=\sqrt{3}$
35. $b=.6$
36. $b=3 / 2$
37. (b) $F(x)=1-x^{-4}$, (c) $\operatorname{Pr}(1 \leq X \leq 2)=15 / 16 . \operatorname{Pr}(X \geq 2)=1 / 16$.
38. (b) $F(x)=1-(x+1)^{-2}$, (c) $\operatorname{Pr}(1 \leq X \leq 2)=5 / 36 . \operatorname{Pr}(X \geq 3)=1 / 16$.

