27. The area and moments of the region are

$$
\begin{aligned}
A & =\int_{0}^{\infty} \frac{d x}{(1+x)^{3}}=\left.\lim _{R \rightarrow \infty} \frac{-1}{2(1+x)^{2}}\right|_{0} ^{R}=\frac{1}{2} \\
M_{x=0} & =\int_{0}^{\infty} \frac{x d x}{(1+x)^{3}} \quad \text { Let } u=x+1 \\
& =\int_{1}^{\infty} \frac{u-1}{u^{3}} d u=d x \\
& =\left.\lim _{R \rightarrow \infty}\left(-\frac{1}{u}+\frac{1}{2 u^{2}}\right)\right|_{1} ^{R}=1-\frac{1}{2}=\frac{1}{2} \\
M_{y=0} & =\frac{1}{2} \int_{0}^{\infty} \frac{d x}{(1+x)^{6}}=\left.\lim _{R \rightarrow \infty} \frac{-1}{10(1+x)^{5}}\right|_{0} ^{R}=\frac{1}{10} .
\end{aligned}
$$

The centroid is $\left(1, \frac{1}{5}\right)$.

Fig. 5-27
21. By symmetry the centroid is $(1,-2)$.

Fig. 5-21
4. The height of each triangular face is $2 \sqrt{3} \mathrm{~m}$ and the height of the pyramid is $2 \sqrt{2} \mathrm{~m}$. Let the angle between the triangular face and the base be θ, then $\sin \theta=\sqrt{\frac{2}{3}}$ and $\cos \theta=\frac{1}{\sqrt{3}}$.

Fig. 6-4

Fig. 6-4
A vertical slice of water with thickness $d y$ at a distance y from the vertex of the pyramid exerts a force on the shaded strip shown in the front view, which has area $2 \sqrt{3} y d y \mathrm{~m}^{2}$ and which is at depth $\sqrt{2} y+10-2 \sqrt{2} \mathrm{~m}$. Hence, the force exerted on the triangular face is

$$
\begin{aligned}
F & =\rho g \int_{0}^{2}(\sqrt{2} y+10-2 \sqrt{2}) 2 \sqrt{3} y d y \\
& =\left.2 \sqrt{3}(9800)\left[\frac{\sqrt{2}}{3} y^{3}+(5-\sqrt{2}) y^{2}\right]\right|_{0} ^{2} \\
& \approx 6.1495 \times 10^{5} \mathrm{~N} .
\end{aligned}
$$

6. The spring force is $F(x)=k x$, where x is the amount of compression. The work done to compress the spring 3 cm is

$$
100 \mathrm{~N} \cdot \mathrm{~cm}=W=\int_{0}^{3} k x d x=\left.\frac{1}{2} k x^{2}\right|_{0} ^{3}=\frac{9}{2} k
$$

Hence, $k=\frac{200}{9} \mathrm{~N} / \mathrm{cm}$. The work necessary to compress the spring a further 1 cm is

$$
W=\int_{3}^{4} k x d x=\left.\left(\frac{200}{9}\right) \frac{1}{2} x^{2}\right|_{3} ^{4}=\frac{700}{9} \mathrm{~N} \cdot \mathrm{~cm} .
$$

12. Let the time required to raise the bucket to height $h \mathrm{~m}$ be t minutes. Given that the velocity is $2 \mathrm{~m} / \mathrm{min}$, then $t=\frac{h}{2}$. The weight of the bucket at time t is $16 \mathrm{~kg}-(1 \mathrm{~kg} / \mathrm{min})(t \mathrm{~min})=16-\frac{h}{2} \mathrm{~kg}$. Therefore, the work done required to move the bucket to a height of 10 m is

$$
\begin{aligned}
W & =g \int_{0}^{10}\left(16-\frac{h}{2}\right) d h \\
& =\left.9.8\left(16 h-\frac{h^{2}}{4}\right)\right|_{0} ^{10}=1323 \mathrm{~N} \cdot \mathrm{~m} .
\end{aligned}
$$

21. If X is distributed normally, with mean $\mu=5,000$, and standard deviation $\sigma=200$, then

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 5500) \\
& =\frac{1}{200 \sqrt{2 \pi}} \int_{5500}^{\infty} e^{-(x-5000)^{2} /\left(2 \times 200^{2}\right)} d x \\
& \text { Let } z=\frac{x-5000}{200} \\
& d z=\frac{d x}{200} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{5 / 2}^{\infty} e^{-z^{2} / 2} d z \\
& =\operatorname{Pr}(Z \geq 5 / 2)=\operatorname{Pr}(Z \leq-5 / 2) \approx 0.006
\end{aligned}
$$

from the table in this section.
22. If X is the random variable giving the spinner's value, then $\operatorname{Pr}(X=1 / 4)=1 / 2$ and the density function for the other values of X is $f(x)=1 / 2$. Thus the mean of X is

$$
\mu=E(X)=\frac{1}{4} \operatorname{Pr}\left(X=\frac{1}{4}\right)+\int_{0}^{1} x f(x) d x=\frac{1}{8}+\frac{1}{4}=\frac{3}{8} .
$$

Also,

$$
\begin{aligned}
E\left(X^{2}\right) & =\frac{1}{16} \operatorname{Pr}\left(X=\frac{1}{4}\right)+\int_{0}^{1} x^{2} f(x) d x=\frac{1}{32}+\frac{1}{6}=\frac{19}{96} \\
\sigma^{2} & =E\left(X^{2}\right)-\mu^{2}=\frac{19}{96}-\frac{9}{64}=\frac{11}{192} .
\end{aligned}
$$

Thus $\sigma=\sqrt{11 / 192}$.
31. The hyperbolas $x y=C$ satisfy the differential equation

$$
y+x \frac{d y}{d x}=0, \quad \text { or } \quad \frac{d y}{d x}=-\frac{y}{x} .
$$

Curves that intersect these hyperbolas at right angles must therefore satisfy $\frac{d y}{d x}=\frac{x}{y}$, or $x d x=y d y$, a separated equation with solutions $x^{2}-y^{2}=C$, which is also a family of rectangular hyperbolas. (Both families are degenerate at the origin for $C=0$.)
24. $y(x)=3+\int_{0}^{x} e^{-y} d t \quad \Longrightarrow \quad y(0)=3$
$\frac{d y}{d x}=e^{-y}, \quad$ i.e. $e^{y} d y=d x$ $e^{y}=x+C \quad \Longrightarrow \quad y=\ln (x+C)$
$3=y(0)=\ln C \quad \Longrightarrow \quad C=e^{3}$
$y=\ln \left(x+e^{3}\right)$.
28. Given that $m \frac{d v}{d t}=m g-k v$, then

$$
\begin{aligned}
& \int \frac{d v}{g-\frac{k}{m} v}=\int d t \\
& -\frac{m}{k} \ln \left|g-\frac{k}{m} v\right|=t+C
\end{aligned}
$$

Since $v(0)=0$, therefore $C=-\frac{m}{k} \ln g$. Also, $g-\frac{k}{m} v$ remains positive for all $t>0$, so

$$
\begin{aligned}
& \frac{m}{k} \ln \frac{g}{g-\frac{k}{m} v}=t \\
& \frac{g-\frac{k}{m} v}{g}=e^{-k t / m} \\
& \Rightarrow \quad v=v(t)=\frac{m g}{k}\left(1-e^{-k t / m}\right)
\end{aligned}
$$

Note that $\lim _{t \rightarrow \infty} v(t)=\frac{m g}{k}$. This limiting velocity can be obtained directly from the differential equation by setting $\frac{d v}{d t}=0$.

