
Theorem. If X is a metrizable, locally compact space that is σ-compact, show
that C0(X) is separable.

Proof. The theorem will be proved using the following sequence of lemmas.

Lemma 1. Given any locally compact metric space Y , and y ∈ Y , there exists
δy > 0 such that B(y; δy) has compact closure.

Proof. By the definition of local compactness, every y ∈ Y has a compact neigh-
borhood, which (by definition of a neighborhood) contains an open ball centered
at y. �

Lemma 2. There exists a countable collection L = {Lm : m ∈ N} of compact sets
in X with the following property. For any compact set K ⊆ X, there exists Lm ∈ L
such that K ⊆ Lm.

Proof. Since X is σ-compact (i.e. a countable union of compact sets), every open
cover of X must have a countable subcover. Since the family of balls {B(x; δx) :
x ∈ X}, where δx is as in Lemma 1, is an open cover for X, there exists a countable
subcollection {xi : i ≥ 1} ⊆ X such that

X ⊆
∞⋃

i=1

B
(
xi; δxi

)
.

Let L denote the collection of sets consisting of all possible finite unions of the
closed balls B(xi; δxi). By Lemma 1, each element of L is a compact subset of X
(recall that a finite union of compact sets is compact). Moreover, L is countable,
since the collection of finite subsets of a countable set is countable. Finally, every
compact K ⊆ X is contained in a finite union of the {B(xi; δxi) : i ≥ 1}, and hence
is contained in some member of L. �

Construction of a countable dense subset of C0(X)

Lemma 3. For any n ∈ N, there exists a countable covering U (n) of X by relatively
compact open balls with diameter bounded above by 1

n .

Proof. Since {B(x;min{δx, 1
n}) : x ∈ X} forms an open cover of X, by σ-compactness

we can extract a countable subcover with the desired properties. �

For every n, m ∈ N, let U (n,m) = {B(n,m)
1 , B

(n,m)
2 , · · · , B

(n,m)
Jn,m

} ⊆ U (n) be a finite
subcover of Lm, where Lm is as in Lemma 2. While there may be many choices for
U (n,m), we fix one for every choice of (n, m), and only work with these in the sequel.
Applying the partition of unity lemma, there exists a finite collection of functions
{χ(n,m)

j : 1 ≤ j ≤ Jn,m} with the following properties: for every 1 ≤ j ≤ Jn,m,

(i) the function χ
(n,m)
j : X → [0, 1] is continuous,

(ii) supp(χ(n,m)
j ) ⊆ B

(n,m)

j , and

(iii)
∑

j χ
(n,m)
j (x) ≡ 1 for all x ∈ Lm.

We now define

Xn,m =

{
Jn,m∑
j=1

ajχ
(n,m)
j : aj ∈ Q ∀j

}
and X =

⋃
n,m

Xn,m.
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By construction, Xn,m is countable for every n, m ∈ N, therefore so is X. Further ev-

ery function in Xn,m is continuous and has support in the compact set
⋃Jn,m

j=1 B
(n,m)

j ,
which implies that X ⊆ C0(X). �

It therefore remains to prove the following.

Lemma 4. X is dense in C0(X).

Proof. Fix f ∈ C0(X) and ε > 0. Since f is uniformly continuous (why?), there
exists δ > 0 such that

(1) |f(x)− f(y)| < ε

4
whenever d(x, y) < δ.

Let Fε = {x ∈ X : |f(x)| > ε}, so that Fε is open in X with compact closure. Then
F ε

2
⊆ F ε

4
, which implies that F ε

2
and F c

ε
4

are disjoint closed sets. Since the map
x 7→ d(x, F c

ε
4
) is continuous on X and strictly positive on F ε

4
, and F ε

2
is compact,

therefore

(2) d = dist(F ε
2
, F c

ε
4
) > 0. Similarly d′ = dist(F ε

4
, F c

ε
8
) > 0

Choose n large enough to that 1/n < min(δ, d, d′), where δ and (d, d′) have been
defined in (1) and (2) respectively. By Lemma 2, we can pick an integer m such
that F ε

16
⊆ Lm. Set

(3) g =
Jn,m∑
j=1

ajχ
(n,m)
j , where

{
|aj − f(cj)| < ε

4 , aj ∈ Q if cj ∈ F ε
4

aj = 0 otherwise.

Here cj denotes the center of the ball B
(n,m)
j . Then

(4) supp(g) ⊆ F ε
8
.

This is because for x ∈ B
(n,m)
j \F ε

8
, our choice of n implies cj /∈ F ε

4
, so that aj = 0

by (3). Therefore g ≡ 0 on F c
ε
8
.

We claim that supx∈X |f(x)− g(x)| < ε. To see this, suppose first that x /∈ F ε
8
.

Then by the support property (4) of g, |f(x)− g(x)| = |f(x)| ≤ ε
8 < ε. If x ∈ F ε

8
,

by (iii) on page 1,

|f(x)− g(x)| = |
∑

j

(f(x)− aj)χ
(n,m)
j (x)|

≤
∑

j

|f(x)− aj |χ(n,m)
j (x)

≤
∑

j:cj∈F ε
4

(|f(x)− f(cj)|+ |f(cj)− aj |)χ(n,m)
j (x)

+
∑

j:cj /∈F ε
4

|f(x)|χ(n,m)
j (x)

<
( ε

4
+

ε

4
)

+
ε

2
= ε.

In the last two steps of the above calculation we have used the description of aj-s
from (3), Lemma 3 and (1). The last step also uses the fact that if cj /∈ F ε

4
and

1/n < d, then (by (2)) for any x ∈ B
(n,m)
j , x /∈ F ε

2
, so that |f(x)| < ε

2 . �


