Name:

SID #:

1. Evaluate

$$\int_{\gamma} \frac{dz}{z},$$

where $\gamma: [0,1] \to \mathbb{C}$ is the closed polygon joining the points

$$1-i, 2, 1+i, 2i, -1+i, -2, -1-i, -2i, 1-i$$

in that order. Give complete justification. (Hint: Avoid direct computation if possible.)

(10 points)

Proof. The polygon γ is a square (consisting of four line segments, one in each quadrant) oriented in the counterclockwise direction and passing through the points ± 2 and $\pm 2i$. Denote by γ_i the straight line segment of the rhombus lying in the *i*-th quadrant. Define $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$ to be the circle of radius 2, with Γ_i denoting the portion of Γ that lies in the *i*-th quadrant. Note that for each *i*, the curves γ_i and Γ_i have the same endpoints.

Our claim is that

(1)
$$\oint_{\gamma_i} \frac{dz}{z} = \oint_{\gamma_i} \frac{dz}{z}, \qquad i = 1, \cdots, 4$$

Assuming the claim for a moment, we see that

$$\oint_{\gamma} \frac{dz}{z} = \sum_{i=1}^{4} \oint_{\gamma_i} \frac{dz}{z}$$
$$= \sum_{i=1}^{4} \oint_{\Gamma_i} \frac{dz}{z}$$
$$= \oint_{\Gamma} \frac{dz}{z} = \int_{0}^{2\pi} \frac{2ie^{i\theta}}{2e^{i\theta}} d\theta = 2\pi i.$$

It remains to prove (1). Fix *i*. Let \mathbb{D} be any disk not containing the origin but containing γ_i and Γ_i . Then $\gamma_i - \Gamma_i$ is a closed curve in \mathbb{D} . (To clarify, the notation $\gamma_i - \Gamma_i$ represents the curve that goes from $\gamma_i(0)$ to $\gamma_i(1)$ via γ_i in the time interval [0, 1/2] and returns to $\gamma_i(1)$ via Γ_i in [1/2, 1]). Since the function $z \mapsto 1/z$ is holomorphic on \mathbb{D} , Cauchy's theorem for the disk yields

$$\int_{\gamma_i - \Gamma_i} \frac{dz}{z} = 0, \quad \text{i.e.}, \int_{\gamma_i} \frac{dz}{z} = \int_{\Gamma_i} \frac{dz}{z},$$

which is the desired conclusion.