1. Evaluate

$$
\int_{\gamma} \frac{d z}{z}
$$

where $\gamma:[0,1] \rightarrow \mathbb{C}$ is the closed polygon joining the points

$$
1-i, 2,1+i, 2 i,-1+i,-2,-1-i,-2 i, 1-i
$$

in that order. Give complete justification. (Hint: Avoid direct computation if possible.)
(10 points)
Proof. The polygon $\gamma$ is a square (consisting of four line segments, one in each quadrant) oriented in the counterclockwise direction and passing through the points $\pm 2$ and $\pm 2 i$. Denote by $\gamma_{i}$ the straight line segment of the rhombus lying in the $i$-th quadrant. Define $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}$ to be the circle of radius 2 , with $\Gamma_{i}$ denoting the portion of $\Gamma$ that lies in the $i$-th quadrant. Note that for each $i$, the curves $\gamma_{i}$ and $\Gamma_{i}$ have the same endpoints.

Our claim is that

$$
\begin{equation*}
\oint_{\gamma_{i}} \frac{d z}{z}=\oint_{\gamma_{i}} \frac{d z}{z}, \quad i=1, \cdots, 4 . \tag{1}
\end{equation*}
$$

Assuming the claim for a moment, we see that

$$
\begin{aligned}
\oint_{\gamma} \frac{d z}{z} & =\sum_{i=1}^{4} \oint_{\gamma_{i}} \frac{d z}{z} \\
& =\sum_{i=1}^{4} \oint_{\Gamma_{i}} \frac{d z}{z} \\
& =\oint_{\Gamma} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{2 i e^{i \theta}}{2 e^{i \theta}} d \theta=2 \pi i .
\end{aligned}
$$

It remains to prove (1). Fix $i$. Let $\mathbb{D}$ be any disk not containing the origin but containing $\gamma_{i}$ and $\Gamma_{i}$. Then $\gamma_{i}-\Gamma_{i}$ is a closed curve in $\mathbb{D}$. (To clarify, the notation $\gamma_{i}-\Gamma_{i}$ represents the curve that goes from $\gamma_{i}(0)$ to $\gamma_{i}(1)$ via $\gamma_{i}$ in the time interval [ $0,1 / 2$ ] and returns to $\gamma_{i}(1)$ via $\Gamma_{i}$ in $\left.[1 / 2,1]\right)$. Since the function $z \mapsto 1 / z$ is holomorphic on $\mathbb{D}$, Cauchy's theorem for the disk yields

$$
\int_{\gamma_{i}-\Gamma_{i}} \frac{d z}{z}=0, \quad \text { i.e., } \int_{\gamma_{i}} \frac{d z}{z}=\int_{\Gamma_{i}} \frac{d z}{z}
$$

which is the desired conclusion.

