$$
\text { Math 440/508 Quiz } 2 \text { Solution, Fall } 2017
$$

1. For all possible values of a_{0} and a_{1}, find the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text { where } \quad a_{n}=a_{n-1}+a_{n-2} \text { for all } n>1
$$

(10 points)
Solution. The possible values of the radius of convergence are $(\sqrt{5} \pm 1) / 2$ and ∞.
Set $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Clearly the radius of convergence $R=\infty$ if $a_{0}=a_{1}=0$. If at least one of a_{0} and a_{1} is nonzero, then the recursion relation above implies

$$
\sum_{n=2}^{\infty} a_{n} z^{n}=\sum_{n=2}^{\infty} a_{n-1} z^{n}+\sum_{n=2}^{\infty} a_{n-2} z^{n} \quad \text { i.e., } f(z)-a_{0}-a_{1} z=z\left(f(z)-a_{0}\right)+z^{2} f(z)
$$

Solving the equation leads to the following expression for f :

$$
\begin{equation*}
f(z)=\frac{-a_{0}+\left(a_{0}-a_{1}\right) z}{z^{2}+z-1} \tag{1}
\end{equation*}
$$

In other words f is a rational function, which is holomorphic at all points z except possibly where $z^{2}+z-1=0$, i.e., $z=(-1 \pm \sqrt{5}) / 2$. Set

$$
\alpha_{1}=\frac{-1+\sqrt{5}}{2}, \quad \alpha_{2}=\frac{-1-\sqrt{5}}{2}, \quad \text { so that }\left|\alpha_{1}\right|<\left|\alpha_{2}\right| .
$$

The radius of convergence of f is determined by the possible cancellation of the numerator and denominator in (1). More precisely, two cases arise.

Case 1: either $a_{0}=a_{1}$ or $a_{0} /\left(a_{0}-a_{1}\right) \neq \alpha_{1}$. In this case f fails to be holomorphic at α_{1}, and hence the power series expansion is valid on the smallest disc centred at the origin excluding α_{1}. In other words, $R=\left|\alpha_{1}\right|$.

Case 2: $a_{0} /\left(a_{0}-a_{1}\right)=\alpha_{1}$. In this case, $f(z)=\left(a_{0}-a_{1}\right) /\left(z-\alpha_{2}\right)$, so its power series expansion is valid on $|z|<R=\left|\alpha_{2}\right|$.

