Name:

SID #:

1. Show that there exists an analytic function f defined on the unit disc \mathbb{D} centred at the origin such that $f(\mathbb{D}) = \mathbb{D} \setminus \{0\}$, and f' never vanishes on \mathbb{D} . Explain why this does not contradict the Riemann mapping theorem.

(10 points)

Solution. There exists a Möbius transformation T that maps $\partial \mathbb{D}$ onto \mathbb{R} , with $T(\mathbb{D}) = \mathbb{H}$, the upper half-space. The mapping $\varphi(z) = e^{-z}$ then maps \mathbb{H} onto $\mathbb{D} \setminus \{0\}$. The function $f = \varphi \circ T$ is the desired analytic map, since $f'(z) = T'(\varphi(z))\varphi'(z) = -e^{-z}T'(\varphi(z)) \neq 0$ on \mathbb{D} . Recall that T is an automorphism of \mathbb{C}_{∞} , hence has nonvanishing derivative everywhere.

We know that \mathbb{D} cannot be conformally equivalent to $\mathbb{D} \setminus \{0\}$. However, the mapping f is not conformal, since φ is $2\pi i$ -periodic, hence many-to-one. Thus there is no contradiction with the Riemann mapping theorem.