Math 440/508 Quiz 10 Solution

Name:

SID #:

1. Determine whether the following statement is true or false, with complete justification. Every automorphism of the extended complex plane is a Möbius transformation.

(10 points)

Solution. The statement is true. If $\varphi \in \operatorname{Aut}(\mathbb{C}_{\infty})$, then φ is holomorphic (hence continuous) at every point in \mathbb{C}_{∞} . In particular, φ cannot have an essential singularity at any point, since an essential singularity of φ would be a point of discontinuity in \mathbb{C}_{∞} . Hence φ must be meromorphic in \mathbb{C}_{∞} . We proved in class that a meromorphic function on the extended complex plane must be a rational function, i.e.,

$$\varphi(z) = \frac{P(z)}{Q(z)}$$
, where P and Q are polynomials.

For φ to be a bijection on \mathbb{C}_{∞} , we must have P and Q to be linear, otherwise the points 0 and ∞ respectively would have multiple pre-images under φ . Therefore $\varphi(z) = (az+b)/(cz+d)$ for $a, b, c, d \in \mathbb{C}$. Since φ is non-constant, we must have $ad - bc \neq 0$. In other words, φ is a Möbius transformation.