Math 440/508 Quiz 1 Solution, Fall 2017

1. Does there exist a function $f: \mathbb{C} \rightarrow \mathbb{C}$ that is holomorphic at every point on the unit circle $\mathbb{S}^{1}=\{z \in \mathbb{C}:|z|=1\}$ and not holomorphic anywhere else in the complex plane? If yes, provide such a function with complete justification. If not, explain why not.
(10 points)

Solution. Yes, such a function exists.

Consider the function $f(z)=(|z|-1)^{2}$. Then f is infinitely real-differentiable for all $z \neq 0$. For such z,

$$
\frac{\partial f}{\partial \bar{z}}=2(|z|-1) \frac{z}{\bar{z}},
$$

which is nonzero unless $|z|=1$. We have proved in class that a smooth function f is holomorphic if and only if it satisfies the Cauchy-Riemann equations, namely $\partial f / \partial \bar{z}=0$. Therefore we conclude that f is holomorphic at $z_{0} \in \mathbb{C} \backslash\{0\}$ if and only if z_{0} satisfies $\left|z_{0}\right|=1$. Further if $z_{0}=0$, a direct computation shows that

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|^{2}-2|h|}{h}=-2 \lim _{h \rightarrow 0} \frac{|h|}{h}
$$

does not exist, as can be seen by choosing sequences h approaching 0 along the real and imaginary axis respectively. This proves that f is not holomorphic at zero either, completing the proof.

