
Chapter 8, Exercise 13

The pseudo-hyperbolic distance between two points z, w ∈ D is defined by

ρ(z, w) =

∣

∣

∣

∣

z − w

1− w̄z

∣

∣

∣

∣

.

• Prove that if f : D → D is holomorphic, then

ρ(f(z), f(w)) ≤ ρ(z, w) for all z, w ∈ D.

Moreover, prove that if f is an automorphism of D, then f preserves the
pseudo-hyperbolic distance

ρ(f(z), f(w)) = ρ(z, w) for all z, w ∈ D.

• Prove that
|f ′(z)|

1− |f(z)|2
≤

1

1− |z|2
for all z ∈ D.

This result is called the Schwarz-Pick lemma.

Solution

Part a

Suppose that f is a holomorphic function from D to D. Define the automorphism

φα(z) =
z − α

1− ᾱz

This is a Blaschke factor as described in chapter 1, exercise 7, and as such we
showed it was an automorphism of D in a previous assignment.

Note that φw maps w to 0, and φ−1(w) maps 0 to w. Thus

φf(w) ◦ f ◦ φ−1
w

maps 0 to 0. Thus we can apply the Schwarz-Pick lemma to conclude that

|φf(w) ◦ f ◦ φ−1
w (z)| ≤ |z| for all z ∈ D.

Fix z ∈ D. Because φ−1
w is an automorphism, there is a unique z′ = φw(z) such

that φ−1
w (z′) = z; namely z′ = φw(z). Thus

|φf(w) ◦ f(z)| ≤ |z′| =

∣

∣

∣

∣

z − w

1− w̄z

∣

∣

∣

∣

as desired.
If f is an automorphism of D, then the same argument as above applies to

f−1. Thus we get, for all z̃, w̃ ∈ D:

ρ(f−1(z̃), f−1(w̃)) ≤ ρ(z̃, w̃)

and letting z̃, w̃ be f(z), f(w) we get

ρ(z, w) ≤ ρ(f(z), f(w))

as desired.
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Part b

In order to prove the Schwarz-Pick lemma, we use a limiting argument.
By the inequality from Part a, we have that for any holomorphic function

f , and any z, w in the disc D.

∣

∣

∣

∣

∣

f(z)− f(w)

1− f(w)z

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

z − w

1− w̄z

∣

∣

∣

∣

We will rearrange this inequality:

∣

∣

∣

∣

∣

f(z)− f(w)

z − w

1

1− f(w)z

∣

∣

∣

∣

∣

≤
1

1− w̄z

Taking the limit as z → 0 and using the differentiability of f , we get:

|f ′(z)|

|1− |f(z)|2|
≤

1

|1− |z|2|

and the absolute values surrounding the denominators on both sides can be
removed because |z|2 < 1 by assumption.

Chapter 8, Problem 3

The Schwarz-Pick lemma (see Exercise 13) is the infinitesimal version of an
important observation in complex analysis and geometry.

For complex numbers w ∈ C and z ∈ D we define the hyperbolic length

of w at z by

‖w‖z =
|w|

1− |z|2
,

where |w| and |z| denote the usual absolute values. This length is sometimes
referred to as the Poincaré metric, and as a Riemann metric it is written as

ds2 =
|dz|2

(1− |z|2)2
.

The idea is to think of w as a vector lying in the tangent space at z. Observe that
for a fixed w, its hyperbolic length grows to infinity as z approaches the bound-
ary of the disc. We pass from the infinitesimal hyperbolic length of tangent
vectors to the global hyperbolic distance between two points by integration.

• Given two complex numbers z1 and z2 in the disc, we define the hyper-

bolic distance between them by

d(z1, z2) = inf
γ

∫ 1

0

‖γ′(t)‖γ(t) dt,
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where the infimum is taken over all smooth curves γ : [0, 1] → D joining
z1 and z2. Use the Schwarz-Pick lemma to prove that if f : D → D is
holomorphic, then

d(f(z1), f(z2)) ≤ d(z1, z2) for any z1, z2 ∈ D.

In other words, holomorphic functions are distance-decreasing in the hy-
perbolic metric.

• Prove that automorphisms of the unit disc preserve the hyperbolic dis-
tance; namely

d(φ(z1), φ(z2)) = d(z1, z2) for any z1, z2 ∈ D.

Conversely, if φ : D → D preserves the hyperbolic distance, then either φ
or φ̄ is an automorphism of D.

• Given two points z1, z2 ∈ D, show that there exists an automorphism φ
such that φ(z1) = 0 and φ(z2) = s for some s on the segment [0, 1) on the
real line.

• Prove that the hyperbolic distance between 0 and s ∈ [0, 1) is

d(0, s) =
1

2
log

1 + s

1− s
.

• Find a formula for the hyperbolic distance between any two points in the
unit disc.

Solution

Part a

Let γ be a curve connecting z1 and z2. Then we will consider:
∫ 1

0

‖(f ◦ γ)′(t)‖f(γ(t)) dt

=

∫ 1

0

|(f ◦ γ)′(t)|

1− |f(γ(t))|2
dt

=

∫ 1

0

|f ′(γ(t))γ′(t)|

1− f(γ(t))2
dt

≤

∫ 1

0

γ′(t)

1− γ(t)2
dt.

Thus the integral along f ◦ γ is less than or equal to the integral along γ for
any curve γ connecting z1 and z2. Thus, the infimum over such curves f ◦ γ is
less than or equal to the infimum of the integral over such curves γ. Because
the curves f ◦ γ are a subset of those curves connecting f(z1) and f(z2), the
infimum over all such curves is less than or equal to the infimum over curves of
the form f ◦ γ.
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Part b

The Schwarz-pick lemma is seen to hold with equality when f : D → D is an
automorphism by the same argument as in part b of exercise 13, and applying
the argument form part a proves the equality.

Now to tackle the converse. By part d, to be shown later, or by the rotational
symmetry of the hyperbolic distance function about the origin, the level sets of
the distance to the origin are circles centered at the origin, so it is immediately
clear that such any such function φ that fixes the origin must preserve circles
centered at the origin.

Now, we know that automorphisms preserve d, so it follows that the level sets
of d must be circles because automorphisms of D are Möbius transformations.
Thus f preserves circles. Furthermore, it is clear that f is continuous as can be
seen by observing that f must map very small circles to very small circles.

By part c, we can locate automorphisms ψ, φ such that g := ψ◦f ◦φ satisfies
g(0) = 0 and g(1/2) = s for some real s. Recalling that circles around 0 are
preserved, and that circles around 1

2 map to specific circles around s, we can
locate g(z) (up to complex conjugation) for all z satisfying 0 < Re(z) < 1

2 by
picking appropriate circles centered at 0 and 1

2 , and observing that the inter-
section points much map to the intersection points. Using this and continuity,
we get that g or ḡ (and thus f or f̄) must be holomorphic for 0 < Re(z) < 1

2 .
The choice of 1/2 can e changed to any number between −1 and 1 in order to
conclude that f must be holomorphic.

From here, it’s easy to see that f is an automorphism: g is a holomorphic
function that preserves circles centered at the origin, so it follows from the
Schwarz lemma that f is an automorphism.

Part c

Such an automorphism can be constructed by mapping z1 to 0 using the Blaschke
factor ψz1 . Then, by choosing an appropriate θ, the negative of the argument
of ψz1(z2), we have that e

iθψz1(z2) is equal to some nonnegative real number s.
Of course, that real number is the absolute value

∣

∣

∣

∣

z1 − z2
1− z1z̄2

∣

∣

∣

∣

of ψz1(z2).

Part d

We need to estimate
∫ 1

0

|γ′(t)|

1 + |γ(t)|2
dt
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But γ′(t) is x(t) + iy(t), and |γ(t)|2 is x(t)2 + y(t)2. Thus the integrand is

bounded by |x′(t)
1+|x(t)|2 , and we can bound our integral by

∫ 1

0

|x′(t)

1− x(t)2
dt

This integral is clearly minimized if x′(t) does not change sign and no back-
tracking occurs:

∫ 1

0

x′(t)

1− x(t)2
dt

We can now make a change of variables:

∫ s

0

dx

1− x2

which can be computed using partial fraction decomposition.
The result is

d(0, s) =
1

2
log

1 + s

1− s
.

Part e

The hyperbolic distance is invariant under automorphisms, so we combine c and

d to move z1 to 0 and z2 to
∣

∣

∣

z1−z2
1−z1z̄2

∣

∣

∣

. Then we get the expression

d(z1, z2) =
1

2
log

1 +
∣

∣

∣

z1−z2
1−z1z̄2

∣

∣

∣

1−
∣

∣

∣

z1−z2
1−z1z̄2

∣

∣

∣

.
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