Chapter 2, Exercise 11

Let f be a holomorphic function on the disc $D_{R_{0}}$ centered at the origin and of radius R_{0}.

- Prove that whenever $0<R<R_{0}$ and $|z|<R$, then

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \phi}\right) \operatorname{Re}\left(\frac{R e^{i \phi}+z}{R e^{i \phi}-z}\right) d \phi
$$

- Show that

$$
\operatorname{Re}\left(\frac{R e^{i \gamma}+r}{R e^{i \gamma}-r}\right)=\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos \gamma+r^{2}}
$$

Solution

Part a

We first notice that, because $R>|z|$, we have that $\frac{f(\zeta)}{\zeta-R^{2} / \bar{z}}$ is a holomorphic function on the disc D_{R}, so

$$
\int_{|\zeta|=R} \frac{f(\zeta)}{\zeta-R^{2} / \bar{z}} d \zeta=0
$$

Therefore, we have

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{|\zeta|=R} f(\zeta) \frac{1}{\zeta-z} d \zeta \\
& =\frac{1}{2 \pi i} \int_{|\zeta|=R} f(\zeta)\left(\frac{1}{\zeta-z}+\frac{1}{\zeta \bar{\zeta} / \bar{z}-\zeta}\right) \\
& =\frac{1}{2 \pi i} \int_{|\zeta|=R} f(\zeta)\left(\frac{1}{\zeta-z}+\frac{\bar{z}}{\zeta(\bar{\zeta}-\bar{z})}\right) \\
& =\frac{1}{2 \pi i} \int_{|\zeta|=R} f(\zeta) \frac{\zeta \bar{\zeta}-z \bar{z}}{\zeta(\zeta-z)(\bar{\zeta}-\bar{z})}
\end{aligned}
$$

But on the other hand:

$$
\begin{aligned}
\operatorname{Re}\left(\frac{\zeta+z}{\zeta-z}\right) & =\frac{1}{2}\left(\frac{\zeta+z}{\zeta-z}+\frac{\bar{\zeta}+\bar{z}}{\bar{\zeta}-\bar{z}}\right) \\
& =\frac{1}{2} \frac{\zeta \bar{\zeta}-\zeta \bar{z}+z \bar{\zeta}-z \bar{z}+\zeta \bar{\zeta}-z \bar{\zeta}+\zeta \bar{z}-z \bar{z}}{(\zeta-z)(\bar{\zeta}-\bar{z})} \\
& =\frac{\zeta \bar{\zeta}-z \bar{z}}{(\zeta-z)(\bar{\zeta}-\bar{z})}
\end{aligned}
$$

So the two integrals are equal (remembering the Jacobian factor $d \phi=\frac{d \zeta}{\zeta}$).

Part b

We have from before

$$
\operatorname{Re}\left(\frac{\zeta+z}{\zeta-z}\right)=\frac{\zeta \bar{\zeta}-z \bar{z}}{(\zeta-z)(\bar{\zeta}-\bar{z})}
$$

let $\zeta=R e^{i \gamma}$ and $z=r$:

$$
\begin{aligned}
\operatorname{Re}\left(\frac{R e^{i \gamma}+z}{R e^{i \gamma-z}}\right) & =\frac{R^{2}-r^{2}}{\left(R e^{i \gamma}-r\right)\left(R e^{-i \gamma}-r\right)} \\
& =\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\gamma)+r^{2}}
\end{aligned}
$$

as desired.

Chapter 2, Exercise 12

Let u be a real-valued function defined on the unit disc \mathbb{D}. Suppose that u is a twice continuously differentiable function and harmonic, that is,

$$
\delta u(x, y)=0
$$

for all $(x, y) \in \mathbb{D}$.

- Prove that there exists a holomorphic function f on the unit disc such that

$$
\operatorname{Re}(f)=u
$$

Also show that the imaginary part of f is uniquely defined up to an additive (real) constant.

- Deduce from this result, and from Exercise 11, the Poisson integral representation formula from the Cauchy integral formula: if u is harmonic in the unit disc and continuous on its closure, then if $z=r e^{i \theta}$, one has

$$
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{r}(\theta-\phi) u\left(e^{i \phi}\right) d \phi
$$

Where P_{r} is the Poisson kernel.

Solution

Part a

Consider the function $f(x, y)=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}$. Notice that this function satisfies $\frac{\partial \operatorname{Re} f}{\partial x}=\frac{\partial^{2} u}{\partial x^{2}}$ and $\frac{\partial \operatorname{Im} f}{\partial y}=-\frac{\partial^{2} u}{\partial y^{2}}$, which is equal to $\frac{\partial^{2} u}{\partial x^{2}}$ since u is harmonic. Furthermore, $\frac{\partial \operatorname{Re} f}{\partial y}=\frac{\partial^{2} u}{\partial y \partial x}$ and $-\frac{\partial \operatorname{Im} f}{\partial y}=\frac{\partial^{2} u}{\partial x \partial y}$. These are equal because f is continuously differentiable and therefore u satisfies equality of mixed partial
derivatives. Therefore, f satisfies the Cauchy-Riemann equations and has an antiderivative F.

This antiderivative is necessarily of the form $u+i v(x, y)$ for some x, y since $\frac{\partial F}{\partial z}=\frac{\partial F}{\partial x}$. So we have the equation

$$
\frac{\partial \operatorname{Re} f}{\partial x}+i \frac{\partial \operatorname{Im} f}{\partial x}=u_{x}-i u_{y}
$$

So equating real parts, we get $u_{x}=\frac{\partial \operatorname{Re}(F)}{\partial x}$. But the real part of this derivative of F is $\frac{\partial u}{\partial x}$. Similarly, $\frac{\partial F}{\partial z}=-i \frac{\partial F}{\partial y}$, but $-i \frac{\partial F}{\partial y}=-i \frac{\partial \operatorname{Re}(F)}{\partial y}+\frac{\partial \operatorname{Im} F}{\partial y}$. Thus, equating the imaginary parts, we get $\frac{\partial \operatorname{Re}(F)}{\partial y}=u_{y}$. Thus the real part of F is u plus some real constant. This can be chosen to be 0 by selecting a suitable antiderivative for F. Similarly, we can look at the imaginary part of the first equation and the real part of the second equation to get a pair of partial differential equations that clearly determine $\operatorname{Im}(F)$ up to an additive real constant.

Part b

We would like to apply the result from exercise 11, but we cannot take $R=$ $R_{0}=1$ there. Nonetheless, we have for all $R<1$ that

$$
F(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(\operatorname{Re}^{i \phi}\right) \operatorname{Re}\left(\frac{R e^{i \phi}+z}{R e^{i \phi}-z}\right) d \zeta
$$

Writing $z=r e^{i \theta}$ and dividing the numerator and denominator by $e^{i \theta}$:

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(R e^{i \phi}\right) \operatorname{Re}\left(\frac{\operatorname{Re}^{i(\phi-\theta)}+r}{R e^{i(\phi-\theta)}-r}\right)
$$

Thus

$$
F\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} F\left(R e^{i \phi}\right) \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\phi-\theta)+r^{2}}
$$

Taking real parts,

$$
u\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(R e^{i \phi}\right) \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\phi-\theta)+r^{2}}
$$

for all $R<1$.
Now, we observe what happens as $R \rightarrow 1$. Evidently the limit of the left side of the equation is $u\left(r e^{i \theta}\right)$ since none of the quantities on the left hand side of the equation depend on R. The denominator of the right hand size is larger than the strictly positive number $(R-r)^{2}$, so the dominated convergence theorem applies since the right hand side is uniformly bounded. Thus we can pull the limit inside the integral and replace R by 1 .

Chapter 2, Exercise 14

Suppose f is holomorphic in a neighbourhood Ω of the closed unit disc, except for a pole at z_{0} on the unit circle. Show that if

$$
\sum_{n=0}^{\infty} a_{n} z^{n}
$$

represents the power series expansion of f in the open unit disc, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1
$$

Solution

Since $f(z)$ has a pole at z_{0}, we have

$$
f(z)=\frac{b_{-n}}{\left(z-z_{0}\right)^{n}}+\cdots+\frac{b_{-1}}{z-z_{0}}+g(z)
$$

where $g(z)$ is holomorphic on Ω and b_{-n} is not zero.
Thus, letting c_{m} be the coefficient of z^{m} in the expansion of $\frac{b_{-n}}{\left(z-z_{0}\right)^{n}}+\cdots+$ $\frac{b_{-1}}{z-z_{0}}$ and letting d_{m} be the coefficient of z_{m} in the expansion of $g(z)$, we get

$$
a_{m}=c_{m}+d_{m}
$$

so

$$
\frac{a_{m}}{a_{m+1}}=\frac{c_{m}+d_{m}}{c_{m+1}+d_{m+1}}
$$

note that $d_{m} \rightarrow 0$ as $m \rightarrow \infty$, so as long as the c_{m} do not go to zero, we have

$$
\lim _{m \rightarrow \infty} \frac{a_{m+1}}{a_{m}}=\lim _{m \rightarrow \infty} \frac{c_{m+1} c_{m}}{.}
$$

We will consider the expansion of

$$
\frac{1}{\left(z-z_{0}\right)^{j}}
$$

around 0 . Notice that this is a constant multiple of the derivative of

$$
\frac{1}{\left(z-z_{0}\right)^{j-1}} .
$$

Since the coefficient of z_{m} in the expansion of

$$
\frac{1}{z-z_{0}}=\frac{1}{-z_{0}} \frac{1}{1-\frac{z}{z_{0}}}
$$

is equal to $-\left(z_{0}\right)^{-m+1}$ by the geometric series formula. It follows that the limit of the ratios of the coefficients in this expansion is z_{0}, and that the terms in this expansion do not approach zero.

Furthermore, taking a derivative simply multiplies the coefficient of z^{m} by m and shifts it to the coefficient of z^{m-1}, taking any number of derivatives cannot spoil the limit of the ratios of the coefficients. Thus, for any linear combination of any derivatives of $\frac{1}{z-z_{0}}$ we have that the limit of the ratios of the coefficients is z_{0}. Furthermore, because b_{-n} is nonzero, the coefficients in the expansion of $\frac{b_{-n}}{\left(z-z_{0}\right)^{n}}+\cdots+\frac{b_{-1}}{z-z_{0}}$ cannot possibly approach 0 as $m \rightarrow \infty$ because the coefficients in the expansion of $\frac{1}{\left(z-z_{0}\right)^{n}}$ grow like m^{j}. Therefore, the limit of the c_{m} is nonzero and the limit of $\frac{c_{m}}{c_{m+1}}$ is z_{0} as $m \rightarrow \infty$, as desired.

