
Chapter 2, Exercise 11

Let f be a holomorphic function on the disc DR0
centered at the origin and of

radius R0.

• Prove that whenever 0 < R < R0 and |z| < R, then

f(z) =
1

2π

∫ 2π

0

f(Reiφ)Re

(

Reiφ + z

Reiφ − z

)

dφ

• Show that

Re

(

Reiγ + r

Reiγ − r

)

=
R2 − r2

R2 − 2Rr cos γ + r2

Solution

Part a

We first notice that, because R > |z|, we have that f(ζ)
ζ−R2/z̄ is a holomorphic

function on the disc DR, so

∫

|ζ|=R

f(ζ)

ζ −R2/z̄
dζ = 0.

Therefore, we have

f(z) =
1

2πi

∫

|ζ|=R

f(ζ)
1

ζ − z
dζ

=
1

2πi

∫

|ζ|=R

f(ζ)

(

1

ζ − z
+

1

ζζ̄/z̄ − ζ

)

=
1

2πi

∫

|ζ|=R

f(ζ)

(

1

ζ − z
+

z̄

ζ(ζ̄ − z̄)

)

=
1

2πi

∫

|ζ|=R

f(ζ)
ζζ̄ − zz̄

ζ(ζ − z)(ζ̄ − z̄)

But on the other hand:

Re

(

ζ + z

ζ − z

)

=
1

2

(

ζ + z

ζ − z
+

ζ̄ + z̄

ζ̄ − z̄

)

=
1

2

ζζ̄ − ζz̄ + zζ̄ − zz̄ + ζζ̄ − zζ̄ + ζz̄ − zz̄

(ζ − z)(ζ̄ − z̄)

=
ζζ̄ − zz̄

(ζ − z)(ζ̄ − z̄)

So the two integrals are equal (remembering the Jacobian factor dφ = dζ
ζ ).
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Part b

We have from before

Re

(

ζ + z

ζ − z

)

=
ζζ̄ − zz̄

(ζ − z)(ζ̄ − z̄)

let ζ = Reiγ and z = r:

Re

(

Reiγ + z

Reiγ−z

)

=
R2 − r2

(Reiγ − r)(Re−iγ − r)

=
R2 − r2

R2 − 2Rr cos(γ) + r2
,

as desired.

Chapter 2, Exercise 12

Let u be a real-valued function defined on the unit disc D. Suppose that u is a
twice continuously differentiable function and harmonic, that is,

δu(x, y) = 0.

for all (x, y) ∈ D.

• Prove that there exists a holomorphic function f on the unit disc such
that

Re(f) = u.

Also show that the imaginary part of f is uniquely defined up to an addi-
tive (real) constant.

• Deduce from this result, and from Exercise 11, the Poisson integral rep-
resentation formula from the Cauchy integral formula: if u is harmonic in
the unit disc and continuous on its closure, then if z = reiθ, one has

u(z) =
1

2π

∫ 2π

0

Pr(θ − φ)u(eiφ) dφ

Where Pr is the Poisson kernel.

Solution

Part a

Consider the function f(x, y) = ∂u
∂x − i∂u∂y . Notice that this function satisfies

∂Ref
∂x = ∂2u

∂x2 and ∂Imf
∂y = −∂2u

∂y2 , which is equal to ∂2u
∂x2 since u is harmonic.

Furthermore, ∂Ref
∂y = ∂2u

∂y∂x and −∂Imf
∂y = ∂2u

∂x∂y . These are equal because f
is continuously differentiable and therefore u satisfies equality of mixed partial
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derivatives. Therefore, f satisfies the Cauchy-Riemann equations and has an
antiderivative F .

This antiderivative is necessarily of the form u+ iv(x, y) for some x, y since
∂F
∂z = ∂F

∂x . So we have the equation

∂Ref

∂x
+ i

∂Imf

∂x
= ux − iuy.

So equating real parts, we get ux = ∂Re(F )
∂x . But the real part of this derivative of

F is ∂u
∂x . Similarly, ∂F

∂z = −i∂F∂y , but −i∂F∂y = −i∂Re(F )
∂y + ∂ImF

∂y . Thus, equating

the imaginary parts, we get ∂Re(F )
∂y = uy. Thus the real part of F is u plus some

real constant. This can be chosen to be 0 by selecting a suitable antiderivative
for F . Similarly, we can look at the imaginary part of the first equation and the
real part of the second equation to get a pair of partial differential equations
that clearly determine Im(F ) up to an additive real constant.

Part b

We would like to apply the result from exercise 11, but we cannot take R =
R0 = 1 there. Nonetheless, we have for all R < 1 that

F (z) =
1

2π

∫ 2π

0

F (Reiφ)Re

(

Reiφ + z

Reiφ − z

)

dζ

Writing z = reiθ and dividing the numerator and denominator by eiθ:

f(reiθ) =
1

2π

∫ 2π

0

F (Reiφ)Re

(

Rei(φ−θ) + r

Rei(φ−θ) − r

)

Thus

F (reiθ) =
1

2π

∫ 2π

0

F (Reiφ)
R2 − r2

R2 − 2Rr cos(φ− θ) + r2
.

Taking real parts,

u(reiθ) =
1

2π

∫ 2π

0

u(Reiφ)
R2 − r2

R2 − 2Rr cos(φ− θ) + r2
.

for all R < 1.
Now, we observe what happens as R → 1. Evidently the limit of the left side

of the equation is u(reiθ) since none of the quantities on the left hand side of the
equation depend on R. The denominator of the right hand size is larger than
the strictly positive number (R − r)2, so the dominated convergence theorem
applies since the right hand side is uniformly bounded. Thus we can pull the
limit inside the integral and replace R by 1.

3



Chapter 2, Exercise 14

Suppose f is holomorphic in a neighbourhood Ω of the closed unit disc, except
for a pole at z0 on the unit circle. Show that if

∞
∑

n=0

anz
n

represents the power series expansion of f in the open unit disc, then

lim
n→∞

an+1

an
= 1.

Solution

Since f(z) has a pole at z0, we have

f(z) =
b−n

(z − z0)n
+ · · ·+

b−1

z − z0
+ g(z),

where g(z) is holomorphic on Ω and b−n is not zero.

Thus, letting cm be the coefficient of zm in the expansion of b
−n

(z−z0)n
+ · · ·+

b
−1

z−z0
and letting dm be the coefficient of zm in the expansion of g(z), we get

am = cm + dm

so
am

am+1
=

cm + dm
cm+1 + dm+1

note that dm → 0 as m → ∞, so as long as the cm do not go to zero, we have

lim
m→∞

am+1

am
= lim

m→∞

cm+1cm
.

We will consider the expansion of

1

(z − z0)j

around 0. Notice that this is a constant multiple of the derivative of

1

(z − z0)j−1
.

Since the coefficient of zm in the expansion of

1

z − z0
=

1

−z0

1

1− z
z0
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is equal to −(z0)
−m+1 by the geometric series formula. It follows that the limit

of the ratios of the coefficients in this expansion is z0, and that the terms in this
expansion do not approach zero.

Furthermore, taking a derivative simply multiplies the coefficient of zm by m
and shifts it to the coefficient of zm−1, taking any number of derivatives cannot
spoil the limit of the ratios of the coefficients. Thus, for any linear combination
of any derivatives of 1

z−z0
we have that the limit of the ratios of the coefficients

is z0. Furthermore, because b−n is nonzero, the coefficients in the expansion

of b
−n

(z−z0)n
+ · · · + b

−1

z−z0
cannot possibly approach 0 as m → ∞ because the

coefficients in the expansion of 1
(z−z0)n

grow like mj . Therefore, the limit of the

cm is nonzero and the limit of cm
cm+1

is z0 as m → ∞, as desired.

5


