
Chapter 1, Exercise 5

A set Ω is said to be pathwise connected if any two points in Ω can be joined
by a (piecewise-smooth) curve contained entirely in Ω. The purpose of this
exercise is to prove that an open set Ω is pathwise connected if and only if Ω is
connected.

Part (a)

Suppose first that Ω is open and pathwise connected, and that it can be written
as Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are disjoint, non-empty open sets. Chhose
two points w1 ∈ Ω1 and w2 ∈ Ω2 and let γ denote a curve in Ω joining w1 to
w2. Consider a Parameterization z : [0, 1] → Ω of this curve with z(0) = w1 and
z(1) = w2, and let

t∗ = sup
0≤t≤1

{t : z(s) ∈ Ω1 for all 0 ≤ s < t}.

Arrive at a contradiction by considering the point z(t∗)

Solution

As suggested, we consider the point z(t∗). We ask the question: which of Ω1

and Ω2 contains this point? Evidently, this point is not in Ω1: if z(t
∗) is in Ω1,

then, because Ω1 is open, there is an open ball B containing z(t∗). Since z is
continuous, it follows that z−1(B) is open as a subset of [0, 1]. Thus (assuming
t∗ < 1) z−1(Ω1) contains points to the right of t∗, which is impossible. If
t∗ = 1, then there is a sequence of points in Ω1 that converges to z(1) ∈ Ω2,
contradicting the assumption that Ω2 is open.

If we assume instead that z(t∗) ∈ Ω2, we recognize that z(t) ∈ Ω2 if and
only if t > t∗. Thus t∗ is the infimum of all values of t such that z(t) ∈ Ω2,
and we can use the same argument as in the previous paragraph to conclude
z(t∗) /∈ Ω2. Since z(t∗) ∈ Ω1 ∪ Ω2, this is a contradiction.

0.1 Part b

Conversely, suppose that Ω is open and connected. Fix a point w ∈ Ω and let
Ω1 ⊂ Ω denote the set of all points that can be joined to w by a curve contained
in Ω. Also, let Ω2 ⊂ Ω denote the set of all points that cannot be joined to w
by a curve in Ω. Prove that both Ω1, Ω2 are open, disjoin, and their union is
Ω. Finally, since Ω1 is nonempty (why?) conclude that Ω = Ω1 as desired.

0.1.1 Solution

Evidently Ω1∪Ω2 = Ω and Ω1 is disjoint from Ω2. The only thing that remains
to be shown is that both Ω1 and Ω2 are open.
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Let w1 ∈ Ω1. Because Ω is open, Ω contains an open ball B centered at w1.
It is obvious that if w∗ ∈ B, then there is a path z∗ connecting w1 and w∗. Let
z1 be a curve joining w to w1. Then consider the curve defined by

z(t) =

{

z(2t) if 0 ≤ t < 1/2

z(2t− 1) if 1/2 ≤ t ≤ 1

Then z is a continuous, piecewise smooth curve that connects w to w∗. It follows
that B ⊂ Ω1 and that Ω1 is open.

Now, let w2 ∈ Ω2. Because Ω is open Ω contains an open ball B centered at
w2. Let w

∗ ∈ B. If there were a curve z2 that connected w to w∗, then we could,
as in the previous paragraph, find a curve connecting w to w2 by concatenating
the path from w to w∗ and the path from w∗ to w2. Thus w2 ∈ Ω1, which is a
contradiction.

Thus Ω can be written as Ω1 ∪ Ω2 for disjoint open sets Ω1 and Ω2. Since
Ω is connected, either Ω1 = Ω or Ω2 = Ω. But w ∈ Ω1, so Ω1 is nonempty and
therefore Ω1 = Ω.

Chapter 1, Exercise 7

The family of mappings introduced here plays an important role in complex
analysis. These mappings, sometimes called Blaschke factors, will reappear in
the various applications in later chapters.

Part a

Let z, w be two complex numbers such that z̄ω 6= 1. Prove that

∣

∣

∣

∣

w − z

1− w̄z

∣

∣

∣

∣

< 1 if |z| < 1 and |w| < 1

and also that
∣

∣

∣

∣

w − z

1− w̄z

∣

∣

∣

∣

= 1 if |z| = 1 or |w| = 1.

[Hint: Why can we assume that z is real? It then suffices to prove that

(r − w)(r − w̄) ≤ (1− rw)(1 − rw̄)

with equality for appropriate r and |w|.]
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Solution

Write z = reiθ. Then
∣

∣

∣

∣

w − z

1− w̄z

∣

∣

∣

∣

=

∣

∣

∣

∣

w − reiθ

1− w̄reiθ

∣

∣

∣

∣

=

∣

∣

∣

∣

eiθ
we−iθ − r

1− we−iθr

∣

∣

∣

∣

=

∣

∣

∣

∣

we−iθ − r

1− we−iθr

∣

∣

∣

∣

.

Letting w∗ = we−iθ this becomes
∣

∣

∣

∣

w∗ − r

1− w∗r

∣

∣

∣

∣

so it is enough to consider the case in which z = r is a real number. Note
further that replacing w by w is equivalent to taking the complex conjugate of
the entire fraction. So it is enough to show

(

w − r

1− wr

)(

w̄ − r

1− w̄r

)

≤ 1

or equivalently that

(w − r)(w̄ − r) ≤ (1− wr)(1 − w̄r).

Suppose first that w and r both have absolute value less than 1. Let w = seiθ.
Pull out eiθ and e−iθ from the first and second factor on the left turns the left
side into (s − r)2. Doing the same on the right side turns the expression to
(1 − sr)2. Since s, r < 1, we have that sr < min(|s|, |r|) ≤ max(|s|, |r|) < 1 so
(s− r)2 is clearly smaller than (1− sr)2 and we are done.

If s is instead equal to 1, then s − r = 1 − r = 1 − sr, and if r = 1, then
s− r = s− 1 = −(1− s) = −(1− sr), so we have equality in these cases.

Part b

Prove that for a fixed w in the unit disc D, the mapping

F : z 7→
w − z

1− wz

satisfies the following conditions:

1. F maps the unit disc to itself (that is F : D → D), and is holomorphic

2. F interchanges 0 and w, namely F (0) = w and F (w) = 0.

3. |F (z)| = 1 if |z| = 1.

4. F : D → D is bijective. [Hint: Calculate F ◦ F .]
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Solution

(i) and (iii) directly follow from part (a) of the problem except for the holomor-
phy, which is clear except when zw̄ = 1. This can only happen if |w| = 1 and
z = 1

w
. It is seen that F has a removable singularity at z = 1

w
with value w.

(ii) follows by plugging in: the numerator is clearly 0 when z = w, and plugging
in z = 0 makes the numerator equal to w and the denominator equal to 1. All
that remains to be seen is that F is bijective on D. Consider F ◦ F (z). This is

w − w−z
1−w̄z

1− w̄ w−z
1−w̄z

.

We simplify this:

w − w−z
1−w̄z

1− w̄ w−z
1−w̄z

=
w − w−z

1−w̄z

1− w̄(w−z)
1−w̄z

=
w(1 − w̄z)− (w − z)

q − w̄z − w̄(w − z)

=
w − |w|2z − w + z

1− w̄z − |w|2 + w̄z

=
z(1− |w|2)

1− |w|2

= z

so the function F is an involution and therefore bijective on D.

Chapter 1, Exercise 13

Suppose that f is holomorphic in an open set Ω. Prove that in any one of the
following cases:

1. Re(f) is constant;

2. Im(f) is constant;

3. |f | is constant; one can conclude that f is constant.

Solution

Suppose that Re(f) is constant. Then f(x, y) = a+ iv(x, y) for z = x+ iy.
Then we consider the PDEs from the Cauchy-Riemann equations:

0 =
∂u

∂x
=

∂v

∂y
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So ∂v
∂y

is zero, and thus v depends only on x and

0 =
∂u

∂y
= −

∂v

∂x

so ∂v
∂x

is zero and thus v depends only on y. Since v cannot depend on
either x or y, it follows that v is constant.

The same argument works if Im(f) is constant. Alternatively, if Im(f) is
constant, then Re(if) is constant and so if , and thus f , is constant.

Now suppose |f | is constant. Writing f(z) = u(x, y) = iv(x, y) for z =
x + iy, we then have that u(x, y)2 + v(x, y)2 is constant. In particular,
this implies that ∂u

∂x
= − ∂v

∂x
and that ∂u

∂y
= −∂v

∂y
Thus we can again use

the Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
= −

∂v

∂x

and
∂u

∂x
= −

∂u

∂y
=

∂v

∂x

So we get ∂u
∂x

is equal to both ∂v
∂x

and − ∂v
∂x

, showing that both are equal
to zero, and by the same logic as before, f is constant.
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