Chapter 1, Exercise 5

A set Ω is said to be pathwise connected if any two points in Ω can be joined by a (piecewise-smooth) curve contained entirely in Ω. The purpose of this exercise is to prove that an open set Ω is pathwise connected if and only if Ω is connected.

Part (a)

Suppose first that Ω is open and pathwise connected, and that it can be written as $\Omega=\Omega_{1} \cup \Omega_{2}$ where Ω_{1} and Ω_{2} are disjoint, non-empty open sets. Chhose two points $w_{1} \in \Omega_{1}$ and $w_{2} \in \Omega_{2}$ and let γ denote a curve in Ω joining w_{1} to w_{2}. Consider a Parameterization $z:[0,1] \rightarrow \Omega$ of this curve with $z(0)=w_{1}$ and $z(1)=w_{2}$, and let

$$
t^{*}=\sup _{0 \leq t \leq 1}\left\{t: z(s) \in \Omega_{1} \text { for all } 0 \leq s<t\right\}
$$

Arrive at a contradiction by considering the point $z\left(t^{*}\right)$

Solution

As suggested, we consider the point $z\left(t^{*}\right)$. We ask the question: which of Ω_{1} and Ω_{2} contains this point? Evidently, this point is not in Ω_{1} : if $z\left(t^{*}\right)$ is in Ω_{1}, then, because Ω_{1} is open, there is an open ball B containing $z\left(t^{*}\right)$. Since z is continuous, it follows that $z^{-1}(B)$ is open as a subset of $[0,1]$. Thus (assuming $\left.t^{*}<1\right) z^{-1}\left(\Omega_{1}\right)$ contains points to the right of t^{*}, which is impossible. If $t^{*}=1$, then there is a sequence of points in Ω_{1} that converges to $z(1) \in \Omega_{2}$, contradicting the assumption that Ω_{2} is open.

If we assume instead that $z\left(t^{*}\right) \in \Omega_{2}$, we recognize that $z(t) \in \Omega_{2}$ if and only if $t>t^{*}$. Thus t^{*} is the infimum of all values of t such that $z(t) \in \Omega_{2}$, and we can use the same argument as in the previous paragraph to conclude $z\left(t^{*}\right) \notin \Omega_{2}$. Since $z\left(t^{*}\right) \in \Omega_{1} \cup \Omega_{2}$, this is a contradiction.

0.1 Part b

Conversely, suppose that Ω is open and connected. Fix a point $w \in \Omega$ and let $\Omega_{1} \subset \Omega$ denote the set of all points that can be joined to w by a curve contained in Ω. Also, let $\Omega_{2} \subset \Omega$ denote the set of all points that cannot be joined to w by a curve in Ω. Prove that both Ω_{1}, Ω_{2} are open, disjoin, and their union is Ω. Finally, since Ω_{1} is nonempty (why?) conclude that $\Omega=\Omega_{1}$ as desired.

0.1.1 Solution

Evidently $\Omega_{1} \cup \Omega_{2}=\Omega$ and Ω_{1} is disjoint from Ω_{2}. The only thing that remains to be shown is that both Ω_{1} and Ω_{2} are open.

Let $w_{1} \in \Omega_{1}$. Because Ω is open, Ω contains an open ball B centered at w_{1}. It is obvious that if $w^{*} \in B$, then there is a path z^{*} connecting w_{1} and w^{*}. Let z_{1} be a curve joining w to w_{1}. Then consider the curve defined by

$$
z(t)= \begin{cases}z(2 t) & \text { if } 0 \leq t<1 / 2 \\ z(2 t-1) & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

Then z is a continuous, piecewise smooth curve that connects w to w^{*}. It follows that $B \subset \Omega_{1}$ and that Ω_{1} is open.

Now, let $w_{2} \in \Omega_{2}$. Because Ω is open Ω contains an open ball B centered at w_{2}. Let $w^{*} \in B$. If there were a curve z_{2} that connected w to w^{*}, then we could, as in the previous paragraph, find a curve connecting w to w_{2} by concatenating the path from w to w^{*} and the path from w^{*} to w_{2}. Thus $w_{2} \in \Omega_{1}$, which is a contradiction.

Thus Ω can be written as $\Omega_{1} \cup \Omega_{2}$ for disjoint open sets Ω_{1} and Ω_{2}. Since Ω is connected, either $\Omega_{1}=\Omega$ or $\Omega_{2}=\Omega$. But $w \in \Omega_{1}$, so Ω_{1} is nonempty and therefore $\Omega_{1}=\Omega$.

Chapter 1, Exercise 7

The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called Blaschke factors, will reappear in the various applications in later chapters.

Part a

Let z, w be two complex numbers such that $\bar{z} \omega \neq 1$. Prove that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|<1 \text { if }|z|<1 \text { and }|w|<1
$$

and also that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|=1 \text { if }|z|=1 \text { or }|w|=1 .
$$

[Hint: Why can we assume that z is real? It then suffices to prove that

$$
(r-w)(r-\bar{w}) \leq(1-r w)(1-r \bar{w})
$$

with equality for appropriate r and $|w|$.]

Solution

Write $z=r e^{i \theta}$. Then

$$
\begin{aligned}
\left|\frac{w-z}{1-\bar{w} z}\right| & =\left|\frac{w-r e^{i \theta}}{1-\bar{w} r e^{i \theta}}\right| \\
& =\left|e^{i \theta} \frac{w e^{-i \theta}-r}{1-\overline{w e^{-i \theta} r}}\right| \\
& =\left|\frac{w e^{-i \theta}-r}{1-\overline{w e^{-i \theta}} r}\right|
\end{aligned}
$$

Letting $w^{*}=w e^{-i \theta}$ this becomes

$$
\left|\frac{w^{*}-r}{1-w^{*} r}\right|
$$

so it is enough to consider the case in which $z=r$ is a real number. Note further that replacing w by \bar{w} is equivalent to taking the complex conjugate of the entire fraction. So it is enough to show

$$
\left(\frac{w-r}{1-w r}\right)\left(\frac{\bar{w}-r}{1-\bar{w} r}\right) \leq 1
$$

or equivalently that

$$
(w-r)(\bar{w}-r) \leq(1-w r)(1-\bar{w} r)
$$

Suppose first that w and r both have absolute value less than 1 . Let $w=s e^{i \theta}$. Pull out $e^{i \theta}$ and $e^{-i \theta}$ from the first and second factor on the left turns the left side into $(s-r)^{2}$. Doing the same on the right side turns the expression to $(1-s r)^{2}$. Since $s, r<1$, we have that $s r<\min (|s|,|r|) \leq \max (|s|,|r|)<1$ so $(s-r)^{2}$ is clearly smaller than $(1-s r)^{2}$ and we are done.

If s is instead equal to 1 , then $s-r=1-r=1-s r$, and if $r=1$, then $s-r=s-1=-(1-s)=-(1-s r)$, so we have equality in these cases.

Part b

Prove that for a fixed w in the unit disc \mathbb{D}, the mapping

$$
F: z \mapsto \frac{w-z}{1-w z}
$$

satisfies the following conditions:

1. F maps the unit disc to itself (that is $F: \mathbb{D} \rightarrow \mathbb{D}$), and is holomorphic
2. F interchanges 0 and w, namely $F(0)=w$ and $F(w)=0$.
3. $|F(z)|=1$ if $|z|=1$.
4. $F: \mathbb{D} \rightarrow \mathbb{D}$ is bijective. [Hint: Calculate $F \circ F$.]

Solution

(i) and (iii) directly follow from part (a) of the problem except for the holomorphy, which is clear except when $z \bar{w}=1$. This can only happen if $|w|=1$ and $z=\frac{1}{w}$. It is seen that F has a removable singularity at $z=\frac{1}{w}$ with value w. (ii) follows by plugging in: the numerator is clearly 0 when $z=w$, and plugging in $z=0$ makes the numerator equal to w and the denominator equal to 1 . All that remains to be seen is that F is bijective on \mathbb{D}. Consider $F \circ F(z)$. This is

$$
\frac{w-\frac{w-z}{1-\bar{w} z}}{1-\bar{w} \frac{w-z}{1-\bar{w} z}}
$$

We simplify this:

$$
\begin{aligned}
& \frac{w-\frac{w-z}{1-\bar{w} z}}{1-\bar{w} \frac{w-z}{1-\bar{w} z}} \\
= & \frac{w-\frac{w-z}{1-\bar{w} z}}{1-\frac{\bar{w}(w-z)}{1-\bar{w} z}} \\
= & \frac{w(1-\bar{w} z)-(w-z)}{q-\bar{w} z-\bar{w}(w-z)} \\
= & \frac{w-|w|^{2} z-w+z}{1-\bar{w} z-|w|^{2}+\bar{w} z} \\
= & \frac{z\left(1-|w|^{2}\right)}{1-|w|^{2}} \\
= & z
\end{aligned}
$$

so the function F is an involution and therefore bijective on \mathbb{D}.

Chapter 1, Exercise 13

Suppose that f is holomorphic in an open set Ω. Prove that in any one of the following cases:

1. $\operatorname{Re}(f)$ is constant;
2. $\operatorname{Im}(f)$ is constant;
3. $|f|$ is constant; one can conclude that f is constant.

Solution

Suppose that $\operatorname{Re}(f)$ is constant. Then $f(x, y)=a+i v(x, y)$ for $z=x+i y$. Then we consider the PDEs from the Cauchy-Riemann equations:

$$
0=\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}
$$

So $\frac{\partial v}{\partial y}$ is zero, and thus v depends only on x and

$$
0=\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

so $\frac{\partial v}{\partial x}$ is zero and thus v depends only on y. Since v cannot depend on either x or y, it follows that v is constant.
The same argument works if $\operatorname{Im}(f)$ is constant. Alternatively, if $\operatorname{Im}(f)$ is constant, then $\operatorname{Re}(i f)$ is constant and so $i f$, and thus f, is constant.
Now suppose $|f|$ is constant. Writing $f(z)=u(x, y)=i v(x, y)$ for $z=$ $x+i y$, we then have that $u(x, y)^{2}+v(x, y)^{2}$ is constant. In particular, this implies that $\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial x}$ and that $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial y}$ Thus we can again use the Cauchy-Riemann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=-\frac{\partial v}{\partial x}
$$

and

$$
\frac{\partial u}{\partial x}=-\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}
$$

So we get $\frac{\partial u}{\partial x}$ is equal to both $\frac{\partial v}{\partial x}$ and $-\frac{\partial v}{\partial x}$, showing that both are equal to zero, and by the same logic as before, f is constant.

