Chapter 1, Exercise 5

A set Q is said to be pathwise connected if any two points in {2 can be joined
by a (piecewise-smooth) curve contained entirely in . The purpose of this
exercise is to prove that an open set (2 is pathwise connected if and only if €2 is
connected.

Part (a)

Suppose first that §2 is open and pathwise connected, and that it can be written
as Q = Q1 U Qs where Q7 and Qs are disjoint, non-empty open sets. Chhose
two points wy; € ;1 and we € 5 and let v denote a curve in €2 joining wy to
ws. Consider a Parameterization z : [0, 1] — € of this curve with z(0) = w; and
2(1) = wa, and let

t* = sup {t:z(s) € N forall 0 < s < t}.
0<t<1

Arrive at a contradiction by considering the point z(t*)

Solution

As suggested, we consider the point z(t*). We ask the question: which of Q
and Qy contains this point? Evidently, this point is not in Qy: if z(¢*) is in Qy,
then, because {7 is open, there is an open ball B containing z(¢*). Since z is
continuous, it follows that 2~!(B) is open as a subset of [0, 1]. Thus (assuming
t* < 1) 271(Q;) contains points to the right of ¢*, which is impossible. If
t* = 1, then there is a sequence of points in Q; that converges to z(1) € Qo,
contradicting the assumption that €, is open.

If we assume instead that z(t*) € Qa, we recognize that z(t) € Qs if and
only if ¢ > ¢*. Thus t* is the infimum of all values of ¢ such that z(¢) € Qq,
and we can use the same argument as in the previous paragraph to conclude
2(t*) ¢ Qa. Since z(t*) € Q1 U Qy, this is a contradiction.

0.1 Partb

Conversely, suppose that 2 is open and connected. Fix a point w € 2 and let
Q1 C 2 denote the set of all points that can be joined to w by a curve contained
in Q. Also, let Qo C Q denote the set of all points that cannot be joined to w
by a curve in €. Prove that both Q, Q5 are open, disjoin, and their union is
Q. Finally, since 3 is nonempty (why?) conclude that Q = ; as desired.

0.1.1 Solution

Evidently Q; UQy = Q and ; is disjoint from 5. The only thing that remains
to be shown is that both €7 and 5 are open.



Let wy € ©1. Because €2 is open, ) contains an open ball B centered at w;.
It is obvious that if w* € B, then there is a path z* connecting w; and w*. Let
z1 be a curve joining w to w;. Then consider the curve defined by

o[ os<i<iy
O=Vo@-1) i1p<i<i

Then z is a continuous, piecewise smooth curve that connects w to w*. It follows
that B C Q; and that ; is open.

Now, let we € Q5. Because () is open () contains an open ball B centered at
wsy. Let w* € B. If there were a curve z, that connected w to w*, then we could,
as in the previous paragraph, find a curve connecting w to wa by concatenating
the path from w to w* and the path from w* to wy. Thus wy € 2, which is a
contradiction.

Thus Q can be written as €7 U €y for disjoint open sets €1 and €. Since
Q) is connected, either Q1 = Q or Qs = Q. But w € Q1, so € is nonempty and
therefore 2 = Q.

Chapter 1, Exercise 7

The family of mappings introduced here plays an important role in complex
analysis. These mappings, sometimes called Blaschke factors, will reappear in
the various applications in later chapters.

Part a

Let z,w be two complex numbers such that Zw # 1. Prove that

'w__2'<1if|z|<1and|w|<1
1—wz
and also that
‘w__z =1if|z] =1or |w| = 1.
1—wz

[Hint: Why can we assume that z is real? It then suffices to prove that
(r—w)(r—w) < (1—rw)(l—rw)

with equality for appropriate r and |w|.]



Solution

Write z = re?®. Then

w—z w — ret?
1 —wz 1 — wret®
—if

g we W —p

we™ ¥ —r
1 —wer
Letting w* = we™% this becomes
w* —1r
1 —w*r

so it is enough to consider the case in which z = r is a real number. Note
further that replacing w by w is equivalent to taking the complex conjugate of
the entire fraction. So it is enough to show

w—r w—r
- <1
<1—wr> (1—wr> -

(w—r)(w—7)<(1—wr)(l—war).

or equivalently that

Suppose first that w and r both have absolute value less than 1. Let w = se®.
Pull out ¢ and e=% from the first and second factor on the left turns the left
side into (s — r)?. Doing the same on the right side turns the expression to
(1 — sr)?. Since s,r < 1, we have that sr < min(]s, |r|) < max(|s|,|r]) < 1 so
(s — )% is clearly smaller than (1 — sr)? and we are done.

If s is instead equal to 1, then s —r =1 —r =1 — sr, and if r = 1, then

s—r=s—1=—(1-35)=—(1-sr), so we have equality in these cases.
Part b
Prove that for a fixed w in the unit disc D, the mapping
F:z— i
1—-wz

satisfies the following conditions:
1. F maps the unit disc to itself (that is F': D — D), and is holomorphic
2. F interchanges 0 and w, namely F(0) = w and F(w) = 0.
3. |F(z)|=1if |z] = 1.
4. F:D — D is bijective. [Hint: Calculate F o F]



Solution

(i) and (iii) directly follow from part (a) of the problem except for the holomor-
phy, which is clear except when zw = 1. This can only happen if |w| = 1 and
z = % It is seen that F' has a removable singularity at z = % with value w.
(ii) follows by plugging in: the numerator is clearly 0 when z = w, and plugging
in z = 0 makes the numerator equal to w and the denominator equal to 1. All
that remains to be seen is that F' is bijective on D). Consider F o F(z). This is

We simplify this:

- w—z

L —w 1—wz
w—2z
_ 1—wz

- w(w—2z)
1— 1—wz

w —

~w(l —wz) = (w—2)

g —wz—w(w— 2)

Cw—|wPr—w+z

1l —wz — |w]? 4wz
2(1 - Jwf?)
1—|w|?

=z

so the function F' is an involution and therefore bijective on D.

Chapter 1, Exercise 13

Suppose that f is holomorphic in an open set 2. Prove that in any one of the
following cases:

1. Re(f) is constant;
2. Im(f) is constant;

3. |f| is constant; one can conclude that f is constant.

Solution

Suppose that Re(f) is constant. Then f(x,y) = a+iv(z,y) for z = z+iy.
Then we consider the PDEs from the Cauchy-Riemann equations:

ou Ov

=95 0y



So g—; is zero, and thus v depends only on z and

ou ov

=9~ s
SO % is zero and thus v depends only on y. Since v cannot depend on
either x or y, it follows that v is constant.

The same argument works if Im(f) is constant. Alternatively, if Im(f) is
constant, then Re(if) is constant and so if, and thus f, is constant.

Now suppose |f] is constant. Writing f(z) = u(z,y) = iv(x,y) for z =
x + iy, we then have that u(z,y)? + v(z,y)? is constant. In particular,
this implies that % = —% and that g—z = —g—Z Thus we can again use
the Cauchy-Riemann equations:

ou Ov ov

dx 9y  Oa

and
ou ou Ov

dx~  dy Oz

So we get % is equal to both % and —%, showing that both are equal

to zero, and by the same logic as before, f is constant.



