Math 217, Fall 2009

Solutions to Midterm I

1. Find an equation of the plane that passes through the point $(1,2,3)$ and contains the line $x=3 t, y=1+t, z=2-t$.
(15 points)
Solution: The vectors $\mathbf{v}_{1}=3 \mathbf{i}+\mathbf{j}-\mathbf{k}$ (which is the direction vector of the line) and $\mathbf{v}_{2}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ (which is the vector connecting the points $(1,2,3)$ and $(0,1,2)$) lie on the plane. Therefore the normal vector to the plane is

$$
\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=2 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k} .
$$

The equation of the plane is

$$
(x-1)-2(y-2)+(z-3)=0 \quad \text { or } \quad x-2 y+z=8 .
$$

2. Identify and sketch the graph of the surface $4 x^{2}+4 y^{2}-8 y+z^{2}=0$. Also draw a contour map with several level curves.

Solution: Rewriting the equation, we obtain $x^{2}+(y-1)^{2}+\frac{z^{2}}{4}=1$, which is an ellipsoid centered at $(0,1,0)$, with axes parallel to the coordinate axes, and axial lenths 2,2 and 4 along the x, y and z axes respectively.

The level curves are given by $x^{2}+(y-1)^{2}=1-k^{2} / 4,|k| \leq 2$. These are concentric circles centered at $(0,1)$, shrinking as $|k|$ increases.
3. Find the length of the curve

$$
\begin{equation*}
\mathbf{r}(t)=\left\langle t^{\frac{3}{2}}, \cos (2 t), \sin (2 t)\right\rangle, \quad 0 \leq t \leq 1 \tag{15points}
\end{equation*}
$$

Solution: Since $\mathbf{r}^{\prime}(t)=\left\langle\frac{3}{2} \sqrt{t},-2 \sin (2 t), 2 \cos (2 t)\right\rangle$, therefore $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{4+\frac{9}{4} t}$. The arclength is

$$
\int_{0}^{1} \sqrt{4+\frac{9}{4}} t d t=\frac{61}{27}
$$

4. Two particles move along paths given by

$$
\mathbf{r}_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle, \quad \mathbf{r}_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle
$$

where t denotes time in seconds. Show that the two particles collide, and determine the time of collision.
(10 points)
Solution: The two particles will collide if there is a time t for which all three equations $t^{2}=4 t-3,7 t-12=t^{2}, t^{2}=5 t-6$ are satisfied. We observe that $t=3$ is a solution for all three equations.
5. Find the equation of the tangent plane to the surface

$$
z=y \cos (x-y)
$$

at $(2,2,2)$.

Solution: We compute at (2, 2, 2)

$$
\frac{\partial z}{\partial x}=-y \sin (x-y)=0, \quad \frac{\partial z}{\partial y}=\cos (x-y)+y \sin (x-y)=1 .
$$

The equation of the tangent plane is

$$
z-2=0(x-2)+1(y-2) \quad \text { or } z=y
$$

6. The radius of a right circular cone is increasing at the rate of $1 \mathrm{in} / \mathrm{s}$ while its height is decreasing at a rate of $2 \mathrm{in} / \mathrm{s}$. At what rate is the volume of the cone changing when the radius is 10 in and the height is 5 in.? (Hint: Recall that the volume of a right circular cone is $\frac{\pi}{3}$ times the square of the radius times the height.)

Solution: Since $V=\frac{1}{3} \pi r^{2} h$, we obtain by differentiating with respect to t,

$$
\frac{d V}{d t}=\frac{\pi}{3}\left[2 r \frac{d r}{d t} h+r^{2} \frac{d h}{d t}=\frac{\pi}{3}((20)(1)(5)-(100)(2))\right]=-\frac{100 \pi}{3} \mathrm{in}^{3} / \mathrm{s}
$$

7. Determine whether the following limit exists. If yes, evaluate the limit. If the limit does not exist, explain why.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+\sin ^{2} y}{2 x^{2}+y^{2}}
$$

Solution: Choose a linear path of the form $y=m x$ converging to $(0,0)$. Then

$$
\frac{x^{2}+\sin ^{2} y}{2 x^{2}+y^{2}}=\frac{x^{2}+\sin ^{2}(m x)}{2 x^{2}+(m x)^{2}}=\frac{1+\frac{\sin ^{2}(m x)}{x^{2}}}{2+m^{2}}
$$

Since $\lim _{x \rightarrow 0} \sin (m x) / x=m$ by L'Hopital's rule, we obtain

$$
\lim _{x \rightarrow 0} \frac{1+\frac{\sin ^{2}(m x)}{x^{2}}}{2+m^{2}}=\frac{1+m^{2}}{2+m^{2}}
$$

which depends on m. Thus the limit does not exist.

