Homework 5 Solutions

34.
$$z = f(x, y) = 1000 - 0.005x^2 - 0.01y^2$$
 \Rightarrow $\nabla f(x, y) = \langle -0.01x, -0.02y \rangle$ and $\nabla f(60, 40) = \langle -0.6, -0.8 \rangle$.

- (a) Due south is in the direction of the unit vector $\mathbf{u} = -\mathbf{j}$ and $D_{\mathbf{u}}f(60,40) = \nabla f(60,40) \cdot \langle 0,-1 \rangle = \langle -0.6,-0.8 \rangle \cdot \langle 0,-1 \rangle = 0.8$. Thus, if you walk due south from (60,40,966) you will ascend at a rate of 0.8 vertical meters per horizontal meter.
- (b) Northwest is in the direction of the unit vector $\mathbf{u} = \frac{1}{\sqrt{2}} \langle -1, 1 \rangle$ and $D_{\mathbf{u}} f(60, 40) = \nabla f(60, 40) \cdot \frac{1}{\sqrt{2}} \langle -1, 1 \rangle = \langle -0.6, -0.8 \rangle \cdot \frac{1}{\sqrt{2}} \langle -1, 1 \rangle = -\frac{0.2}{\sqrt{2}} \approx -0.14$. Thus, if you walk northwest from (60, 40, 966) you will descend at a rate of approximately 0.14 vertical meters per horizontal meter.
- (c) $\nabla f(60, 40) = \langle -0.6, -0.8 \rangle$ is the direction of largest slope with a rate of ascent given by $|\nabla f(60, 40)| = \sqrt{(-0.6)^2 + (-0.8)^2} = 1$. The angle above the horizontal in which the path begins is given by $\tan \theta = 1 \implies \theta = 45^{\circ}$.
- **44.** $F(x, y, z) = yz \ln(x + z) \implies \nabla F(x, y, z) = \left\langle -\frac{1}{x + z}, z, y \frac{1}{x + z} \right\rangle$ and $\nabla F(0, 0, 1) = \langle -1, 1, -1 \rangle$. (a) (-1)(x 0) + (1)(y 0) 1(z 1) = 0 or x y + z = 1
 - (b) Parametric equations are $x=-t,\ y=t,\ z=1-t$ and symmetric equations are $\frac{x}{-1}=\frac{y}{1}=\frac{z-1}{-1}$ or -x=y=1-z.
- 44. Let x, y, z, be the positive numbers. Then x + y + z = 12 and we want to minimize $x^2 + y^2 + z^2 = x^2 + y^2 + (12 x y)^2 = f(x, y)$ for 0 < x, y < 12. $f_x = 2x + 2(12 x y)(-1) = 4x + 2y 24$, $f_y = 2y + 2(12 x y)(-1) = 2x + 4y 24$, $f_{xx} = 4$, $f_{xy} = 2$, $f_{yy} = 4$. Then $f_x = 0$ implies 4x + 2y = 24 or y = 12 2x and substituting into $f_y = 0$ gives 2x + 4(12 2x) = 24 \Rightarrow 6x = 24 \Rightarrow x = 4 and then y = 4, so the only critical point is (4, 4). D(4, 4) = 16 4 > 0 and $f_{xx}(4, 4) = 4 > 0$, so f(4, 4) is a local minimum. f(4, 4) is also the absolute minimum [compare to the values of f as $x, y \to 0$ or 12] so the numbers are x = y = z = 4.
- 56. Any such plane must cut out a tetrahedron in the first octant. We need to minimize the volume of the tetrahedron that passes through the point (1,2,3). Writing the equation of the plane as $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, the volume of the tetrahedron is given by $V = \frac{abc}{6}$. But (1,2,3) must lie on the plane, so we need $\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1$ (*) and thus can think of c as a function of a and b. Then $V_a = \frac{b}{6}\left(c + a\frac{\partial c}{\partial a}\right)$ and $V_b = \frac{a}{6}\left(c + b\frac{\partial c}{\partial b}\right)$. Differentiating (*) with respect to a we get $-a^{-2} 3c^{-2}\frac{\partial c}{\partial a} = 0$ \Rightarrow $\frac{\partial c}{\partial a} = \frac{-c^2}{3a^2}$, and differentiating (*) with respect to b gives $-2b^{-2} 3c^{-2}\frac{\partial c}{\partial b} = 0$ \Rightarrow $\frac{\partial c}{\partial b} = \frac{-2c^2}{3b^2}$. Then $V_a = \frac{b}{6}\left(c + a\frac{-c^2}{3a^2}\right) = 0$ \Rightarrow c = 3a, and $V_b = \frac{a}{6}\left(c + b\frac{-2c^2}{3b^2}\right) = 0$ \Rightarrow $c = \frac{3}{2}b$. Thus $3a = \frac{3}{2}b$ or b = 2a. Putting these into (*) gives $\frac{3}{a} = 1$ or a = 3 and then b = 6, c = 9. Thus the equation of the required plane is $\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1$ or 6x + 3y + 2z = 18.

Homework 5 Solutions

- 41. We need to find the extreme values of $f(x,y,z)=x^2+y^2+z^2$ subject to the two constraints g(x,y,z)=x+y+2z=2 and $h(x,y,z)=x^2+y^2-z=0$. $\nabla f=\langle 2x,2y,2z\rangle, \, \lambda \nabla g=\langle \lambda,\lambda,2\lambda\rangle$ and $\mu \nabla h=\langle 2\mu x,2\mu y,-\mu\rangle$. Thus we need $2x=\lambda+2\mu x$ (1), $2y=\lambda+2\mu y$ (2), $2z=2\lambda-\mu$ (3), x+y+2z=2 (4), and $x^2+y^2-z=0$ (5). From (1) and (2), $2(x-y)=2\mu(x-y)$, so if $x\neq y, \mu=1$. Putting this in (3) gives $2z=2\lambda-1$ or $\lambda=z+\frac{1}{2}$, but putting $\mu=1$ into (1) says $\lambda=0$. Hence $z+\frac{1}{2}=0$ or $z=-\frac{1}{2}$. Then (4) and (5) become x+y-3=0 and $x^2+y^2+\frac{1}{2}=0$. The last equation cannot be true, so this case gives no solution. So we must have x=y. Then (4) and (5) become 2x+2z=2 and $2x^2-z=0$ which imply z=1-x and $z=2x^2$. Thus $2x^2=1-x$ or $2x^2+x-1=(2x-1)(x+1)=0$ so $x=\frac{1}{2}$ or x=-1. The two points to check are $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ and $\left(-1,-1,2\right)$: $f\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)=\frac{3}{4}$ and $f\left(-1,-1,2\right)=6$. Thus $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ is the point on the ellipse nearest the origin and $\left(-1,-1,2\right)$ is the one farthest from the origin.
- 56. Inside D: $f_x=2xe^{-x^2-y^2}(1-x^2-2y^2)=0$ implies x=0 or $x^2+2y^2=1$. Then if x=0, $f_y=2ye^{-x^2-y^2}(2-x^2-2y^2)=0$ implies y=0 or $2-2y^2=0$ giving the critical points $(0,0),(0,\pm 1)$. If $x^2+2y^2=1$, then $f_y=0$ implies y=0 giving the critical points $(\pm 1,0)$. Now f(0,0)=0, $f(\pm 1,0)=e^{-1}$ and $f(0,\pm 1)=2e^{-1}$. On the boundary of D: $x^2+y^2=4$, so $f(x,y)=e^{-4}(4+y^2)$ and f is smallest when y=0 and largest when $y^2=4$. But $f(\pm 2,0)=4e^{-4}$, $f(0,\pm 2)=8e^{-4}$. Thus on D the absolute maximum of f is $f(0,\pm 1)=2e^{-1}$ and the absolute minimum is f(0,0)=0.
- 60. $f(x,y)=1/x+1/y, \ g(x,y)=1/x^2+1/y^2=1 \ \Rightarrow \ \nabla f=\left\langle -x^{-2},-y^{-2}\right\rangle =\lambda \nabla g=\left\langle -2\lambda x^{-3},-2\lambda y^{-3}\right\rangle.$ Then $-x^{-2}=-2\lambda x^3 \text{ or } x=2\lambda \text{ and } -y^{-2}=-2\lambda y^{-3} \text{ or } y=2\lambda.$ Thus x=y, so $1/x^2+1/y^2=2/x^2=1$ implies $x=\pm\sqrt{2}$ and the possible points are $\left(\pm\sqrt{2},\pm\sqrt{2}\right)$. The absolute maximum of f subject to $x^{-2}+y^{-2}=1$ is then $f\left(\sqrt{2},\sqrt{2}\right)=\sqrt{2}$ and the absolute minimum is $f\left(-\sqrt{2},-\sqrt{2}\right)=-\sqrt{2}$.