Math 263 Assignment 8 Solutions

Problem 1. Given that $\mathbf{F}(x, y, z)=\left(2 x z+y^{2}\right) \mathbf{i}+2 x y \mathbf{j}+\left(x^{2}+3 z^{2}\right) \mathbf{k}$, find a function f such that $\mathbf{F}=\nabla f$ and use it to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the curve $C: x=t^{2}, y=t+1, z=2 t-1$, $0 \leq t \leq 1$.
Solution. Set

$$
\begin{align*}
f_{x} & =2 x z+y^{2}, \tag{1}\\
f_{y} & =2 x y, \text { and } \tag{2}\\
f_{z} & =x^{2}+3 z^{2} . \tag{3}
\end{align*}
$$

Integrating the first equation with respect to x, we get

$$
f(x, y, z)=x^{2} z+x y^{2}+g(y, z)
$$

Therefore $f_{y}(x, y, z)=2 x y+g_{y}(y, z)$, so comparing with equation (2), we find that $g_{y}(y, z)=$ 0 . In other words, $g(y, z)=h(z)$. Thus $f(x, y, z)=x^{2} z+x y^{2}+h(z)$, from which we obtain $f_{z}(x, y, z)=x^{2}+h(z)$. But $f_{z}(x, y, z)=x^{2}+3 z^{2}$ from equation (3), so $h^{\prime}(z)=3 z^{2}$, i.e., $h(z)=z^{3}+K$. Hence one choice for f (setting $K=0$) is $f(x, y, z)=x^{2} z+x y^{2}+z^{3}$.

In order to compute the line integral, note that $t=0$ corresponds to the point $(0,1,-1)$ and $t=1$ corresponds to $(1,2,1)$, so by the fundamental theorem

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(1,2,1)-f(0,1,-1)=6-(-1)=7
$$

Problem 2. Find the work done by the force field $\mathbf{F}(x, y)=e^{-y} \mathbf{i}-x e^{-y} \mathbf{j}$ in moving an object from $P(0,1)$ to $Q(2,0)$.

Solution. We first verify that the force field is conservative. Setting $\mathcal{P}=e^{-y}$ and $\mathcal{Q} Q=$ $-x e^{-y}$, we see that

$$
\frac{\partial \mathcal{P}}{\partial y}=-e^{-y}=\frac{\partial \mathcal{Q}}{\partial x}
$$

Thus there exists a function f such that $\mathbf{F}=\nabla f$, and the work done to move the particle from P to Q is independent of path.

In fact, we find such an f by setting $f_{x}=e^{-y}$ and $f_{y}=-x e^{-y}$. Integrating the first equationg gives $f(x, y)=x e^{-y}+g(y)$, from which we get $f_{y}=-x e^{-y}=g^{\prime}(y)$.. Comparing with our earlier equation for f_{y}, we find that $g^{\prime}(y)=0$, so we can take $f(x, y)=x e^{-y}$ as a potential function for \mathbf{F}. Thus

$$
W=\int \mathbf{F} \cdot d \mathbf{r}=f(2,0)-f(0,1)=2-0=2
$$

Problem 3. Use Green's theorem to evaluate the line integral $\int_{C} \sin y d x+x \cos y d y$, where C is the ellipse $x^{2}+x y+y^{2}=1$.

Solution. Let D denote the domain enclosed by the ellipse. By Green's theorem,

$$
\int_{C} \sin y d x+x \cos y d y=\iint_{D}\left[\frac{\partial}{\partial x}(x \cos y)-\frac{\partial}{\partial y}(\sin y)\right] d A=\iint_{D}(\cos y-\cos y) d A=0 .
$$

Problem 4. A particle starts at the point $(-2,0)$, moves along the x-axis to $(2,0)$, and then along the semicircle $y=\sqrt{4-x^{2}}$ to the starting point. Use Green's theorem to find the work done on this particle by the force field $\mathbf{F}(x, y)=\left\langle x, x^{3}+3 x y^{2}\right\rangle$.

Solution. Let D denote the semicircular region bounded by C. By Green's theorem,

$$
\begin{aligned}
W & =\int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{C} x d x+\left(x^{3}+3 x y^{2}\right) d y \\
& =\iint_{D}\left(3 x^{2}+3 y^{2}-0\right) d A \\
& =3 \int_{0}^{2} \int_{0}^{\pi} r^{2} r d \theta d r \\
& =12 \pi .
\end{aligned}
$$

Note that we have coverted to polar coordinates at the second to last step.
Problem 5. Find the curl and the divergence of the vector field $\mathbf{F}(x, y, z)=\left\langle e^{x}, e^{x y}, e^{x y z}\right\rangle$.
Solution. $\operatorname{div}(\mathbf{F})=\frac{\partial}{\partial x}\left(e^{x}\right)+\frac{\partial}{\partial y}\left(e^{x y}\right)+\frac{\partial}{\partial z}\left(e^{x y z}\right)=e^{x}+x e^{x y}+x y e^{x y z}$.

$$
\begin{aligned}
\operatorname{curl}(\mathbf{F}) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x} & e^{x y} & e^{x y z}
\end{array}\right| \\
& =\left(x z e^{x y z}-0\right) \mathbf{i}-\left(y z e^{x y z}-0\right) \mathbf{j}+\left(y e^{x y}-0\right) \mathbf{k} \\
& =\left\langle x z e^{x y z},-y z e^{x y z}, y e^{x y}\right\rangle .
\end{aligned}
$$

Problem 6. Determine whether the force field $\mathbf{F}(x, y, z)=y \cos x y \mathbf{i}+x \cos x y \mathbf{j}-\sin z \mathbf{k}$ is conservative. If it is conservative, find a function f such that $\mathbf{F}=\nabla f$.

Solution. We compute

$$
\begin{aligned}
\operatorname{curl}(\mathbf{F}) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y \cos x y & x \cos x y & -\sin z
\end{array}\right| \\
& =(0-0) \mathbf{i}-(0-0) \mathbf{j}+[(-x y \sin x y+\cos x y)-(-x y \sin x y+\cos x y)] \mathbf{k}=\mathbf{0} .
\end{aligned}
$$

Since \mathbf{F} is defines on all of \mathbb{R}^{3} and the partial derivatives of the components functions are continuous, so \mathbf{F} is conservative. Thus there exists a function f such that $\nabla f=\mathbf{F}$. Then
$f_{x}(x, y, z)=y \cos x y \Longrightarrow f(x, y, z)=\sin x y+g(y, z) \Longrightarrow f_{y}(x, y, z)=x \cos x y+g_{y}(y, z)$.
But $f_{y}(x, y, z)=x \cos x y$, so $g(y, z)=h(z)$, and $f(x, y, z)=\sin x y+h(z)$. Thus $f_{z}(x, y, z)=$ $h^{\prime}(z)=-\sin z$, so $h(z)=\cos z+K$; therefore a choice for f is $f(x, y, z)=\sin x y+\cos z+$ K.

Problem 7. Prove that $\operatorname{div}(\nabla f \times \nabla g)=0$.
Solution. We will show that

$$
\begin{equation*}
\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \operatorname{curl} \mathbf{F}-\mathbf{F} \cdot \operatorname{curl} \mathbf{G} \tag{4}
\end{equation*}
$$

The desired identity will follow from (4) by setting $\mathbf{F}=\nabla f, \mathbf{G}=\nabla g$, and recalling that $\operatorname{curl} \nabla f=\mathbf{0}=\operatorname{curl} \nabla g$.

To prove (4), we write $\mathbf{F}=P_{1} \mathbf{i}+Q_{1} \mathbf{j}+R_{1} \mathbf{k}$, and $\mathbf{G}=P_{2} \mathbf{i}+\mathbf{Q}_{2} \mathbf{j}+R_{2} \mathbf{k}$. Then

$$
\begin{aligned}
\operatorname{div}(\mathbf{F} \times \mathbf{G})= & \left|\begin{array}{rrr}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P_{1} & Q_{1} & R_{1} \\
P_{2} & Q_{2} & R_{2}
\end{array}\right| \\
= & \frac{\partial}{\partial x}\left|\begin{array}{ll}
Q_{1} & R_{1} \\
Q_{2} & R_{2}
\end{array}\right|-\frac{\partial}{\partial y}\left|\begin{array}{cc}
P_{1} & R_{1} \\
P_{2} & R_{2}
\end{array}\right|+\frac{\partial}{\partial z}\left|\begin{array}{cc}
P_{1} & Q_{1} \\
P_{2} & Q_{2}
\end{array}\right| \\
= & {\left[Q_{1} \frac{\partial R_{2}}{\partial x}+R_{2} \frac{\partial Q_{1}}{\partial x}-Q_{2} \frac{\partial R_{1}}{\partial x}-R_{1} \frac{\partial Q_{2}}{\partial x}\right]-\left[P_{1} \frac{\partial R_{2}}{\partial y}+R_{2} \frac{\partial P_{1}}{\partial y}-P_{2} \frac{\partial R_{1}}{\partial y}-R_{1} \frac{\partial P_{2}}{\partial y}\right] } \\
& +\left[P_{1} \frac{\partial Q_{2}}{\partial z}+Q_{2} \frac{\partial P_{1}}{\partial z}-P_{2} \frac{\partial Q_{1}}{\partial z}-Q_{1} \frac{\partial P_{2}}{\partial z}\right] \\
= & {\left[P_{2}\left(\frac{\partial R_{1}}{\partial y}-\frac{\partial Q_{1}}{\partial z}\right)+Q_{2}\left(\frac{\partial P_{1}}{\partial z}-\frac{\partial R_{1}}{\partial x}\right)+R_{2}\left(\frac{\partial Q_{1}}{\partial x}-\frac{\partial P_{1}}{\partial y}\right)\right] } \\
& -\left[P_{1}\left(\frac{\partial R_{2}}{\partial y}-\frac{\partial Q_{2}}{\partial z}\right)+Q_{1}\left(\frac{\partial P_{2}}{\partial z}-\frac{\partial R_{2}}{\partial x}\right)+R_{1}\left(\frac{\partial Q_{2}}{\partial x}-\frac{\partial P_{2}}{\partial y}\right)\right] \\
= & \mathbf{G} \cdot \operatorname{curl} \mathbf{F}-\mathbf{F} \cdot \operatorname{curl} \mathbf{G} .
\end{aligned}
$$

