Math 253, Section 102, Fall 2006

Sample Problems from Week 3

Example 1 : Describe and sketch the graphs of the following equations. (i) $y^{2}+4 x^{2}-9 z^{2}=36$, (ii) $y=4 x^{2}+9 z^{2}$, (iii) $z=2 y^{2}-z^{2}$.

Solution. We will only specify the type of the surface; sketching the graph is left to the student.
(i) The graph is a hyperboloid of one sheet with axis the z-axis. Please normal to the z-axis meet the surface in ellipses. Planes containing the z-axis meet it in both branches of a hyperbola.
(ii) The graph is an elliptic paraboloid opening in the positive y direction, with axis the nonnegative y-axis and vertex at the origin.
(iii) Complete the square in z to obatin

$$
\begin{aligned}
2 y^{2}-z^{2}-z & =0 \\
2 y^{2}-z^{2}-z-\frac{1}{4} & =-\frac{1}{4} \\
2 y^{2}-\left(z+\frac{1}{2}\right)^{2} & =-\frac{1}{4}
\end{aligned}
$$

Since x is missing from the equation, the graph has to be a cylinder. It meets the $y z$-plane in the hyperbola with equation

$$
\left(z+\frac{1}{2}\right)^{2}-2 y^{2}=\frac{1}{4}
$$

Thus the graph is a hyperbolic cylinder parallel to the x-axis.
Example 2: Prove that the projection into the $x z$-plane of the intersection of the paraboloids $y=2 x^{2}+3 z^{2}$ and $y=5-3 x^{2}-2 z^{2}$ lies in a circle.

Solution. The intersection of the paraboloids satisfies both defining equations, and therefore lies on the surface with equation

$$
2 x^{2}+3 z^{2}=5-3 x^{2}-2 z^{2}, \quad \text { or } x^{2}+z^{2}=1
$$

This surface is a circular cylinder normal to the $x z$-plane. Therefore the projection of the intersection of the two paraboloids into the $x z$-plane lies on the circle given by the equations

$$
y=0, \quad x^{2}+z^{2}=1 .
$$

Example 3: Describe the graphs of the given equations. (It is understood that equations involving r are in cylindrical coordinates and those including ρ or ϕ are in spherical coordinates.)

$$
\text { (i) } \rho^{2}-4 \rho+3=0, \quad \text { (ii) } z^{2}=r^{4} \text {. }
$$

Solution. (i) The graph of the spherical equation can be written in the form

$$
(\rho-1)(\rho-3)=0,
$$

so that $\rho=1$ or $\rho=3$. The graph consists of all points that satisfy either of these two equations. Hence the graph consists of two concentric spherical surfaces, both centered at the origin, and of radii 1 and 3 respectively. (ii) The cylindrical equation $z^{2}=r^{4}$ can be rewritten as $z= \pm r^{2}$, which can be expressed in Cartesian form as

$$
z=x^{2}+y^{2} \quad \text { or } z=-\left(x^{2}+y^{2}\right) .
$$

The graph thus consists of all points that satisfy either of the last two equations, hence it consists of two circular paraboloids, each with axis the z-axis, vertex at the origin; one opens upward and the other opens downward.

Example 4: Convert the following equation both to cylindrical and to spherical coordinates.

$$
z=x^{2}-y^{2} .
$$

Solution. The Cartesian equation above takes the cylindrical form

$$
z=r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta=r^{2} \cos 2 \theta
$$

It takes the spherical form

$$
\begin{aligned}
\rho \cos \phi & =\rho^{2} \sin ^{2} \phi \cos ^{2} \theta-\rho^{2} \sin ^{2} \phi \sin ^{2} \theta, \\
\rho \cos \phi & =(\rho \sin \phi)^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right), \\
\rho \cos \phi & =(\rho \sin \phi)^{2} \cos 2 \theta, \\
\cos \phi & =\rho \sin ^{2} \phi \cos 2 \theta .
\end{aligned}
$$

Example 5: State the largest possible domain of the given functions.
(i) $f(x, y)=\sqrt{2 x}+(3 y)^{\frac{1}{3}}, \quad$ (ii) $f(x, y)=\sin ^{-1}\left(x^{2}+y^{2}\right)$.

Solution. (i) Any real number has a unique real cube root, hence $(3 y)^{\frac{1}{3}}$ is always well-defined. However $\sqrt{2 x}$ is real if and only if $x \geq 0$. Therefore the domain of f consists of all points (x, y) such that $x \geq 0$, in other words, the right half plane.
(ii) Because $\arcsin z$ is a real number if and only if $-1 \leq z \leq 1$, the domain of f consists of points (x, y) for which $x^{2}+y^{2} \leq 1$; that is, the set of all points on and within the unit curcle.

Example 6 : Describe the level curve of the function

$$
f(x, y)=e^{-x^{2}-y^{2}} .
$$

Solution. Because $e^{-\left(x^{2}+y^{2}\right)}$ is constant exactly where $x^{2}+y^{2}$ is constant, the level curves of f are circles centered at the origin.

