LP DECAY ESTIMATES FOR WEIGHTED OSCILLATORY
INTEGRAL OPERATOR ON R

MALABIKA PRAMANIK AND CHAN WOO YANG

ABSTRACT. In this paper, we formulate necessary conditions for decay rates
of LP operator norms of weighted oscillatory integral operators on R and give

sharp L? estimates and nearly sharp LP estimates.

1. INTRODUCTION

Suppose f and g are real-analytic, real-valued funtions in a neighborhood V'
of the origin in R? with £(0,0) = g(0,0) = 0 and let x be a smooth function of

compact support in V. We consider the oscillatory integral operator

Tyo(a) = / N @D | g, )| x (2. ) o) dy,

where € is any positive number. In this paper we will study the decay rate in \ of
|T\||Lp—1r a8 A — o0.

The case where g(x,y) = 1 has been studied in [Gr], [GS3], [PSt1], [PSt2],
[PSt3], and [R]. In [PSt1] and [PSt2], Phong and Stein considered a case where the
phase function f(z,y) is a real homogeneous polynomial and they obtained sharp
decay estimates for ||T)\||p2_r2. In [PSt3], they took into account of the more
general case where the phase function f(x,y) is a real analytic function and they

proved ||T)\||z2— 2> ~ A™% where § is the reduced Newton distance of f(z,y). In
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[R] Rychkov developed the ideas of Phong and Stein in [PSt3] and Seeger in [S1]
to obtain sharp L? decay estimates for the case where the phase function f(x,y) is
a real smooth function with the condition that the formal power series expansion
of f, at the origin does not vanish. He proved |[Th|[zz_p2 ~ A%, where § is
the reduced Newton distance of the formal power series expansion of f(z,y) at the
origin, with a loss of a certain power of log A in the case where all solutions r(z)
of fr,(x,7(x)) = 0 have the same asymtotic fractional power series expansion with
the leading power 1. In [Gr], Greenblatt gave a new proof for the theorem of Phong
and Stein in [PSt3]. For LP estimates, Greenleaf and Seeger obtained sharp decay
estimates [GS3]. They considered oscillatory integral operators in R™ with a real
smooth phase function with the assumption of two-sided fold singularities. They
established sharp LP? — L9 decay estimates of the oscillatory integral operators. In
[S2], Seeger formulated optimal LP regularity of generalized Radon transforms on
R? and he obtained sharp LP regularity estimates except endpoints. In [Y], sharp

LP decay estimates for T have been established excluding two end-point estimates.

The case where g(x,y) = f/,(z,y) has been studied in [PSt4]. In [PSt4] Phong

1/2 when

and Stein proved best possible decay estimate, that is, ||Ta||zz—r2 ~ A~
g(x,y) = fi,(z,y) and e = 1/2. We wish to investigate the improvement in the
decay rate of ||Tx||L»r—r» when f is unrelated to g.

Higher dimensional case even without any damping factor has not been under-
stood well. There have been a few L? estimates of special cases [C1], [C2], [GS3],

[GS4], [PaSo]. Sharp L? estimates under the assumption of two-sided fold singu-

larities were obtained in [PaSo|. Optimal estimates with one-sided fold singularity
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have been established in [C2] and [GS1]. Various types of higher order singulari-
ties have been treated in [C1], [GS2], and [GS4]. We recommend [GS5] as a more
detailed and organized survey on this subject.

The case where the weight g(x,y) is not related to f(x,y) has been considered by
the first author in a different context [Pr]. In [Pr] she introduced weighted Newton
distance to treat the weighted integral. We shall use some notions in [Pr] and we

briefly describe them. We start with factorizing f/, (z,y) and g(=,y)

fa:c,y(xv y) = U (ZE, y)zalyﬁl H(y - Tl/(x))

g(zy) = Ua(a,y)zy” [[(y — su(2))

where U; i = 1,2 are real analytic functions with U;(0,0) # 0, «;’s and §;’s are

non-negative integers and r,,(z)’s and s,(x)’s are Puiseux series of the form

() cbx®™ 4+ O(z")

sul@) = cua™ +0()

where b, > a, are rational numbers and ¢, # 0. We reindex the combined set of

distinct exponents a, and a, into increasing order so that

O<ar<ag <---<apn.

‘We define

my=#{v : r(x)=ca®+---, ¢, #0}

np=#{p - ru(x) =™ + -, ¢ #0}
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1"

and we call m; and n; the generalized multiplicity of f7/,

and g, respectively, corre-

sponding to the exponent a;. Now we define

A = al‘*‘Zé:l aymp, B = 514’2?;1“ m;

! N
Ci = o+, _,an, D B2+ D s T

Then {(A;, B;)} and {(Cj, D;)} are sets of vertices of the Newton diagrams of f./

zy

"

and g, respectively. The number of common roots of f;,

and ¢ is an important
information to obtain optimal estimates. To extract the information we use a

coordinate transformation 7 given by

(@) = (z,y —q(x)) or (x,y)— (z—q(2),y),

where ¢ is a convergent real-valued Puiseux series in a neighborhood of the origin.
For :’E’y on and g on we can define previous notions such as A;, B;, C;, D;, and q;
in the same way. To avoid the confusion we use the notations A;(n), Bi(n), Ci(n),
Dy(n), and a;(n) to specify the coordinate transformation n. To describe optimal
decay rate of ||T e||Lr—rr we shall need the following notations. Let K = [0,1] xR.

We define subsets Ag, A;, and Ay () of K as

Ay = {(17cy)€I(:oz§1,andagl_l}7
p p P
1 eCr+aD)+2a; 1—al
= {(Za)eK:a< 1
A {(p’a)e @s 20 = p},
A ! e(Cr(n) + av(n)Dr(n) +2ar(n)  1—al
! = — : < 1
v(n) {(p,a)€K a< e T :

where C =14+ a;+ A;+ ;B and C' = Ay (n) + ap (n)Br () + 14 2a(n) — a;. Set

A=A and Ay =()[)Ar(m).
l n v
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Now we finally define A as

A=A;N A N As.

Remark 1.1. When we define Ay () we include the case where a;/ (1) = co. In this

case we assume that

(1.1) Azf(n)={(;»a)€K:a<M}

Theorem 1.2 (Necessity). If Ty is bounded on LP(R) with ||Th||Lr—rr < O(A™%),
then (1/p,a) € A.
Theorem 1.3 (L? estimates). If (1/2,a) € A, then ||T)\||z2— 12 < O(A\™%)

Theorem 1.4 (L? estimates). If (1/p,a) € int(.A), then we have
HT,\HLP_,LP < O()\_a).

Remark 1.5. In theorem 1.4 we only have estimates in the interior of A. During the
proof of the theorem one can easily observe that we have estimates on some part

of the boundary of A. We shall discuss this in detail in part 1 of the final remark.

2. PROOF OF THEOREM 1.2

Proof of Theorem 1.2. Suppose that T) is bounded on LP with ||T)||zr—ra < O(A™%).
We shall show that (1/p,a) € A. Suppose fy,(2,y) = >_, ;50 Cpgr?y?. Then we
have

xp+1yq+1 P P
Z pq p+1 q+1)+ 1($)+ Q(y)

p,q>0

Z Cpgy? + Fi(x) + Fa(y)

p,q>1

where Fj(z) and Fy(y) are real analytic. Note that the Newton diagram of

> pg>1 Cpg®Py? is same as the reduced Newton diagram of f. We fix [. Let C' =
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1+ A4+ a;(B;+1) and R > 0 is a constant to be specified. Now, for large positive
A, we define the function ¢y, ¥y by

e~iM2(W) if R < y)\‘”/c <R+c

ealy) =
0 otherwise,

and

e~ M@ f R<aANV/C < R4
Ua(z) =

0 otherwise.

We claim that for any € > 0, in the support of ¢ (y)i¥x(x) we have:
M (@) = AFy(2) = AFa(y) — ’5quQ) <e

where the sum 3" is taken over (p, q) that belong to the face of the reduced Newton
diagram with equation p + a;q = C, as long as ¢; is taken to be small in terms of
3" |éq| RY and then X is taken to be large. To prove the claim, first we note that

if 0 < ¢1 < R is sufficiently small then we have

> GaAaryt = RY| < 3 apglhary 1)
< Y el 4+ F) A+ a)y — 1) R
€
< .

2

Also, because of the convex nature of the Newton diagram, p+a;q > C for all other
(p, q) such that ¢, # 0, so,
€

A 5 P,d
Z CpgZ7 Y| < 5
(,q);p+aiq#C
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If we take, say ¢ < m/2 then this shows that

| < Taon, ¥ > | / M@ g(z, )2 x (2, y)or(y) ¥ (z)dyde
RQ

= / el[Af(x’y)_AFl(w)_)\FQ(y)]X(J},y)|g($,y)|§dyd$
(w,y)€5A

- / A f(@y)—AF1(2) = AF2(y) -3 Epg RY] lg(z,y)|? dydz
(z,y)ES’)\

where Sy = {(z,y)|1 < M/Cxr<14e¢,R<y\v/C < R+ ¢1}. Hence we have

| < Tapa, oy > | > C x(z,y)|g(z, y)|? dydz.
(z,y)ESxN

Let R > 2 - max{|c|;y = ca™ + --- isaroot of g} and R > 1. Then g(z,y) ~

|z|€|y|P" on the support of @y ()i (z). We therefore have

Ci+a;D; ¢ a;+1

| < Thpx, Py > | >CN" ¢ 2\ cC

as A — oo. Hence, we have

7Cl+alDl_£ 7al+l
| < Thpx, x> | > CA czATTC
1

loallp - lloally A~ e0-3)

2C c p

v

which implies

o< e(Cy + a;Dy) + 2ay n 1 fall'
2C C p

Therefore (1/p, @) € A;.
We fix a root y = r(z) in S; = {r;(x)|r;(x) = c&™ + ---} and I’. Suppose
r(z) = 7(x) + O(|z|% ™). We define ¢, and ¢y as
e~ INF2(y) if f()\*l/c/) + RN (m/C" <y < ,,:();1/0’) +2RN"ar(m/C’

ealy) =
0 otherwise,
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and

e~ IAF1(z)  if \—L/C <zr< A~ +Cl)\*(al/(n)*az+l)/0'
Ua(x) =

0 otherwise

where C" = Ay(n) + ar(n)Br(n) + 1+ 2ay(n) — a;, ¢1 and R are constants, and
Fy, F are real-valued functions to be specified later. On the support of v (y)¥a(x)

we have

[y = r(@)] < [FAY) 4+ 2RA-W OV () 4 O~ /)

Suppose 7(z) = ax® + Bx® + - where without loss of generality o > 0,3 > 0.

Then
y—r(@)] < a9 4 gATN/ L aRATw N/ _ gyme/
. ﬁ[)\_l/cl(l + Cl)\—(az/(n)—az)/C' + O()\—az/(ﬁ)/clm
< 3R\ /¢
and

ly—r(@)| > |[RA™ /O L 5(AVC) Z oAV (1 4 e A (@ (=a)/CTyjan

LA 4 p(aar /€| > By —anmy/er,
=2

Let (2o(A\),yo(N\)) be a fixed point on the support of @x(y)r(z). Then for any

(z,y) in the support

[ tsnaas = [ g6 - fsmlas

o 7YYo 0

(2.1) = f(z,y) = f(x0,y) — f(z,90) + (w0, y0)-



L? DECAY ESTIMATES FOR WEIGHTED OSCILLATORY INTEGRAL OPERATOR ON R 9

Let Fa(y) = f(xo(N),y), Fi(x) = f(z,y0(N)) — f(x0o(A),y0(A)). We notice that for

(s,t) in the support of oy (y)¥x (),

f;/y(svt) ~ |t—’F(s)|Bl/(77)|s|Al/(n)

Ay (m+tay (n)Byr(m)
e L

~ RBN(U)/\

Therefore we have

z Y Ay (n)tay (n)Bys(n) a;r(n) a;r(n)—a;+1
_ A l l _4 I LS i e
/ / 7 (s,t)dtds  ~ RPvmMTiy & ATTE A e
X

o “Yo

~ RBrm+1 . o \71

By choosing c; sufficiently small, we can ensure that for some 0 < € < 7/4

N (z,y) — Af(zo,y) — Af(2,90) + Af (w0, 90)| < e

Hence we have

| <Thox,on >1| > / l9(x, y)| 2 dydx
(z,y) €S
e(Cpr(m)tay (m)Dys(n) ayr(m) ap(m)—a;+1
> - 207 el - [eld
This yields
T e(Cy(m+ap (MDyy (m)+2a;7(n)  1—a;
|< AQDA,Q/JA>‘ _ <G ALYt i _T/ZE

NI ’

which implies

o< e(Cv(n) + av(n) Dy (n)) + 2ar (1) Jlzal
2C" C" p

Therefore (1/p, @) € As.
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Finally we shall show that (1/p,a) € Ag. There exists (zo, yo) such that

lg(z0,90)] >k > 0. Let

and

We define 9 (z) and ¢ (y) by

e—i)xF2(y) if Yo < Yy < Yo + >\_1
or(y) =
0 otherwise,

e~iA(@) gf ro <zx<xzo+C1

Ya(z) =

0 otherwise.

By choosing a small number ¢; > 0 we have

A (2, ) = f (o, 90) — F1(z) — Fa(y))| < m/4.

Hence we have

e_“f(zo’y")/T,\%\(QJ)Q/JA(QJ)W > Ot

and

[fallze ~ AP and  ||gallpr ~ 1.

Therefore we have a < 1 — 1/p. By exchanging the role of fy and g) we have

a < 1/p. This shows that (1/p, a) € Ay. O
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3. PROOF OF THEOREM 1.3

Proof of Theorem 1.3. Recall that the quantities a;, ay (1), 4;, By, Ci, Dy, etc. can

be read off the generalized Newton diagrams of f;/ and g. Let

@y = [ w=r@); 9@y =[] 0—su@)

uEngy pely
and suppose 0 < a1 < ag < -+ < a; < a1 < -+ < apy is the combined set
of leading exponents of r,’s and s,’s(arranged in increasing order of magnitude,

without counting multiplicities). Without loss of generality, let a; > 1. We write

Tho(z) = / N @D | gz, )|V (2, 9) x5 (@)X () (9)dy

where

1 if277 < z<oitl
xi(2) =
0 otherwise.

We consider four ranges of 7, k.:

o q] < k<K a1];

o kK ayy;

e k> an;

e k=aj,
where A < B, A > B, and A = B mean that A+ C < B, A > B+ C, and
A—-C < B < A+ C respectively for some C' > 0 which makes the following
arguments hold true. Since the treatments of the first three cases are similar, we
only consider two cases: a;] < k < a;+17; k ~ aij.
Case 1: q;j < k < aj41]

In this case

" —Aijo—Bik —Ci1jo—Dik
fmyw2 ) l , g~2 ) 1



12 MALABIKA PRAMANIK AND CHAN WOO YANG

on the support of x;(z)xx(y). We have the following estimates of ||T}]|:

(3.1) ||l

IA

C()\2—Azj—Blk)—1/22—e(Czj+le)/2’

(3.2) [T ]| 9~ (i+k)/29—e(Cij+Dik)/2

IN

If we put k = a;j +r with 0 < r < (a;41 — a1)j, we can rewrite (3.1) and (3.2) as
||T]k;‘| S min{)\—1/22j(Al—eCl)/22k(Bl—eDl)/272—j(1+eCL)/22—k(1+eDl)/2}
< min {>\71/22j[(141+al}91)7e(cl+mD,)]/22r(Bl%DZ)/Q7
2—j[1+al+e(cl+alDl)}/22—r<1+eDl>/2} )
First we take into account of the case where

)\—1/22j[(Al+alBl)—e(CH—aLDL)]/QQr(Bl—eDl)/2 < 2—j[1+al+6(cl+a1D[)]/22—T‘(1+6Dl)/27

which is equivalent to
2j(1+al+Al+alBl)/2 < )\1/22—7‘(1+Bl)/2

ie.,

/2 1 _ r(14B;)
(3.3) 2312 < \2@FaFAFa By 9 2AFa T A Fa BY)

By the choice of r we also have
(3.4) 99/2 > 9Farii—an |
By combining (3.3) and (3.4) we obtain

__r 1 _ r(14+B;)
22(al+1*al) S )\2(1+al+Al+alBl) 2 2(0+a;+A;+a;By) ,
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which implies

(3.5) 9% < AP TFeri T ACTaTIBT
Subcase 1: A;+ a;B; > ¢(C; + a; D;)

In this case

AptaB)—e(Cy+ayDy)

ZHTij < )\_1/2)\( 204 FaFa By 22
J

where
1= (B — epy) - LEDNA F0uB) — At auby)
14+a+ A+ aB '
If I <0, then
_1 lhajte(Crta;Dy)
S Tl <A
(4,k); aj<k<Lari41j
If 1 >0, then
_1 ltate(Cte Dy 1, (agazap)l
Z ITjn]] < A7 Tadasabe \* e taesb
(4,k); arj<k<ar41j
7l[1+al+e(cl+alDl)7 (aj41—ap)l ]
< N\ FUTFaFAF@B e tArtaga Bl
We claim that
(3.6)
1+ a;+€e(Cr+ a;Dy) (41 —ar)l I+ a +e(Cr+ai1Dy)

l+u+A+aB  1+an+A+aaB  14+a4+ A + a1 B

By rewriting (3.6) we have to show

1+ a;+€(Cr+ aD)][1 + a1 + A + a1 Bi] — (@41 — ar)
X [(Bl — EDZ)(l +a +A + alBl) — (Bl + 1){Al + a;B; — G(Cl + alDl)}]

=14 ai+1 +¢(C) + ar1 D)][1 + ar + A + a1 By].
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Now we take derivatives of the left and right hand sides with respect to a;11:

d
(LHS) = (1 + Bl)[l +a; + 6(01 + CL[D[)]
daj4q
— [(Bl —eD)(I+a+ A+ alBl) — (Bl + 1){141 + a1 B — E(Cl + alDl)}]
= (1+ Bl)[l +a+e(Cr+aiD) + A+ By — €(C) + alDl)]
— (Bl — GDl)(l +a;+ A+ CL[BZ)
= (1 + EDZ)(l +a;+ A+ alBl),
d
(RHS) = (1 + GDZ)(]. +a;+ A+ alBl).
dal+1

Also if a;11 = a; then it is easy to see that the left hand side is same to the right

hand side. Thus the claim is proved.

Subcase 2: A; + a;B; < €(C; + a; D))

In this case

 Ajta; By —e(Cy+a; D))

_1 T _
D Tl < ATE2rT e a(Bimely
J
1 rArterpi Bi—e(Ctaryq DY)
< A\ 222 ai+1-9

If A + al+1Bl > G(Cl + al+1Dl), then (35) yields

Z 1 1 Arterp1Bi—e(Otagq Dy)
||T]k” < A2 )\? I+a;1+A;+a; 1B
(4,k); arj<k<ais1j
1 YHappa+e(Citar 1Dy
< N 2 e A Fea B

_ 1 e +e(@qpatarp1Diqa)
= )\ 2 lteptAate B
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If Aj+ ajr1B; < ¢(Cy + aj+1Dy), then
1
> [ Tjkl] < A72.
(4,k); arj<k<Larq1j

Now we consider the case where

. 1 _ r(14+By)
(3.7) 93/2 > \2OFa T AFa B 9 2 Fa A +aBp) |

(3.4) still holds in this case. We consider two cases:

1 _ r(1+B;) r
(38) A\20+4a;+A;+a;By) 9 2(1+a;+A;+a; By) > 92(ajy1—ap) :
1 _ r(1+Bp) T
(3.9) A2 Fa +A;+a;B)) @ 2AFa+ A +a;Bp) « Q2(app1—ap)
We rewrite (3.8) as
- aj41—9g
(3.10) 23 < )\2(+ap1+41+a418141) |

By using (3.7) we obtain

+a;By)—e(Cyt+a;Dy)
2(

1 (A -
Z||Tjk|| < ATIN OFAFata By 2351
J

If I < 0 then we have a convergent geometric series which we sum to obtain

14a;+e(Cy+a; D))

STl < A7F
5.k

If I > 0 then (3.10) and (3.6) yield

1 1tagpi+e(Crtag DY)
STyl < A7 TR
Jik

Now we rewrite (3.9) as

aj41—ag
(3.11) 2% > )\20Far1+AFa 1 Bi1) |
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In this case we use (3.4) to obtain

1ta;+e(Cypta;Dy)

STl <27 E T g g en),
J

We then use (3.11) to get

_ 1t+a;1+e(Cr+a;1Dy)
§ . PIEEE FAF B
||j’jk||§)\ (a1 +A+ag4q z),
ik

which is the desired estimate. This completes the treatment of Case 1.
Case 2: k=~ ayj
In this case we choose a real root t(z) of f;, (z,y) = 0 or g(x,y) = 0 and put

y—1t(x) ~27" m > aqj. Let
ar < ai(n) < azn) < <ap(n) <

be the set of leading exponents of {r,(z) —t(x); v € I'yy }U{s.(x) —t(z); p € I'y}.

If ar(n)j € m < ag+17 then we have

1~ 9—Ak(n)jg—Br(mm. g~ 2~ Cr(mig=Dx(n)m
Ty ’ '

We write

T me(x) = /R e @Y |g(2, )| x (2, 1) (W)X () xk () Xim (y — () dy.

The following estimates hold:

(3.12) (|77 ml]

IN

O()\Q*(Az' (mJi+By (n)m))*1/2(2*(0ﬂ (m3i+Dy (n)M))6/2,

(3.13) ||Tf\,k,m|| < 27moi(a=1)/2(9=(Cu(mi+Dymm))e/2,

since Ay < 27™ and Az < 27™2%~1 where Ay is the maximal variation in gy for

a fixed z in the region under consideration and Ax is defined in a similar way. By
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putting m = ap(n)j +r with 0 < r < (ap+1(n) — ar(n))J, we have

)

HT]?\k Al < min {/\*1/2QJ(AV(n)*eCw(n))/22m(Bzr(n)*eDw(n))/2
2j<az—1—ecl/(n>>/22—m<2+eDz/(n)/Z}

— tmin {/\—1/22j{(141/(71)+az/(77)Bz’(n))—ﬁ(cl’(71)“'“11'(W)Dl’(n))]/QQT’(Bz'(n)—EDz’(Vl))/Q’

Q*J'[(H?au(n)*az)Jré(Cz/(n)Jraw(n)Du(77))}/224(2+6sz(77))/2} ,

First we consider the case where
A~ 1/293 (A (m)+ay (m) By () —e(Cpr (n)+ay () Dyr (m))]/297(Byr (n)—€Dys (0)) /2

< 9—il(1+2ay (n)—ar)+e(Cp (n)+ay (1) Dy (m))]/29—r(2+€eDy (?7))/27

that is,
. 1
91/2 < \TA M Fa By (WF2a; (N—a; 1)
e By (m)+2
x 2 2 Apmtap By m+2y(n)—ap+1
Also,

”
93/2 > 92y G =ay )

This implies

1( 1 + Bl/(n)+2 ) )
922 appm—ay () T A +ay () By (M)+2a, () —a;+1 < N2 GFay By () +2ay () —a;+1)

which is equivalent to

2%(‘41/ (77)+’11’+1("7)Bz/ (77)+2az/+1(77)_al+1) S )\%(al’+1('fl)_azl ("7))7

i.e.,

1 ayypq(m—ay ()
2% < )\2 Apmtay By (m+2ay 4 (n)—ap+1
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‘We therefore have

1 (A (m)+ay (m)Byr (n)—e(Cpr(m)+ay (m) Dy (n))
A~ /2)2 Ay (T ay; (M By (M F2ay, (M) —a; +1

IN

> Tl
j

e (B E2)[(Ay (m)+ay () By (m)=<(Cpy (n)+ay () Dy ()]
x99 2 Ay (m+ay () By (m)+2ay () —a;+1

« 95 (Bu () =Dy ()

1 20y (M) —ap+1+e(Cpy (m)tay (MWD (m)
< N2 Za e R A (D Fay (B (D 22J

where

J = (Br(n) —eDr(n)

~ (Br(n) +2)[(Av(n) + ar(n)Br(n) — e(Cr (n) + av (1) Dy (n))]
Avia(n) + av(n) B (n) + 2av (n) —ar + 1 '

If J < 0, then

1 2ap(m)—a+1+e(Cp(m)tay (n)Dyr(n))
E : ||Tj>\ka < N\ 2 2ap - IF A (Fay (B ()

Jik,ms ap (n)j<<m<Lay 4 (n)j

If J >0, then

1 20y (M) —ag+1+4e(Cpy (M) +ay (1) Dyr(m)
§ H km” < >\ 2 2ay (m)—ap+1+A (m)+a, () By (n)

Jikom; ap (n)j<m<ay 41(n)j

(ayr 4y (M—ay (m)J
% )\2 A )Ty 4y (N By (2 g () —a 71

We claim that

2ap(n) —ar+ 1+ e(Cp(n) +ar(n)Dr(n) (av+1(n) —av(n))J
2ap(n) —ar + 1+ Av(n) +ar()Br(n)  2ap41(n) — ar + 1+ A (n) + aps1(n) By (n)
)

_ 2ap41(n) —ar+ 1+ €(Cr(n) + ar41(n) D (n))
2ap41 —a + 14+ Ap(n) + avg1(n)Br(n)
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ie.,

[2ar(n) — ar + 1+ €(Cr(n) + ar (n) Dr(n)1[2ar+1(n) — ar + 1+ Av(n) + av41(n) Br ()]
— (ar+1(n) — ar (n)[(Brr(n) — Dy (n)(Av (n) + ar (1) B (n) + 2ar(n) — ar + 1)
— (Br(n) + 2){(Ar(n) + ay (n) By (n) — e(Cr(n) + ar (1) Dy (n))}]

= (Ay(n) + ar(n) By (n) + 2ar(n) — ar + 1)[2ap 11(n) — ar + 1+ €(Cy () + ar (n) Dy (n))].

The claim is proved using the same techniques as before.

Now we have to treat the case where

. 1
01/2 - \TA ) Fay (B (M F2a; () —a;+1)

. By (m)+2
X 2 2 ApmtaymMBym+2(m—a+1

Since we can directly apply an earlier argument to handle this case, we omit the
detail here.
If m ~ ay/(n)j, then there exists ¢ € such that y — () is “small”. Put y —(x) ~

27P and repeat the same arguments as before. Then we conclude

75l < OA=072

where

5= . <1 1 1+ a; + E(Cl + alDl) 1 1+ 20,[/(’)’]) —a; + E(Oy(’l]) + al/(n)Dl/(n))>
=min | =, = - = .
2°2 1+aq+A+aB "2 1+ 2&[/(77) —a; + (Ay(?’]) + al/(n)Bl/ (7’]))
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4. PROOF OF THEOREM 1.4

In this section we will prove theorem 1.4. We construct an analytic family
of operators Tf so that when Re(8) = 1/2, Tf is a damped oscillatory integral

operator of the form

ﬂ”wwz/évwwmuawwawww@m%

whose L? decay estimate we know of. When Re(3) = —a/(1 — 2a), we shall prove

(1—2a)
Tf is bounded on L T-7a , which yields theorem 1.4 by complex interpolation in

[StW].

Proof of Theorem 1.4. We consider an analytic family of operators

(41) Tl = /e”f(””’y)lg(x,y)IE“/Q’ﬁ)\fi'y(Ly)\ﬁx(x,y)w(y)dy
We note that T = T) and that if Re(3) = 1/2 then we have

Theorem 4.1 ([PSt4]).

T |22 = O(ATV/2).

When Re(f) = —a/(1 —2a), Tf is a form of fractional integration and we want
to obtain estimate without any decay rate. To do this we shall use the following

lemma.

Lemma 4.2. If K(x,y) > 0 be the kernel of an operator T and K (x,y) satisfies
the following,

1

/K(xay)yiidy S C$7P, /K(l‘vy)xiédl‘ S Cyiév

where 1/p+1/q =1, then

Tﬂ@=/K@wﬂw@
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is bounded in LP.

Proof of Lemma 4.2. For ¢ € LP and ¢ € L? (% % = 1) with ||¢||, = ||¢|lq = 1,

we have

leW(@)| = |o(y)a myrap(z)y ma|

INA
1
5
<
S~—
=
H|
Q|
<
_
+
| =
<
—~
&
=
Qﬁl
S
&
<=

Therefore, we have

’//ny Voo () dyd

_1 1 1 _1 1
< [ [Kewpetiae s [ [ K ot ds
< C/p+Clq.
This completes the proof. [

Now we shall prove the following lemma.

Lemma 4.3. If (1/p,a) € int(A), then T;a/(lih) is bounded on L™= with

the operator norm O(1).

Proof of Lemma 4.3. Since the oscillation does not play any role, it suffices to ob-

tain L e = boundedness of the operator

Diola) = [ lgta, )|

Fo ()| =25 x (2, y) o (y) dy.

Let
K(z,y) = |g(z,y)| 72 | f1,, (x,y)| 5=

By lemma 4.2, it suffices to show that

C
(4.2) /Kwy i pa_ dy < —i—pa

yp(l 2a) rr(l—2a)
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and
1 C
(4.3) /K(xay)ﬁdx S e
I xrp(1-20a) yp(172a)
where I = [—|I],|I|] with a sufficiently small |I|. Since the argument to prove (4.3)

is pararell to the argument for (4.2), we shall only show (4.2). The proof can be
divided into finite steps and we shall here show the first two steps. To complete
the proof we can repeat the same argument.

Step I Considering each quadrant separately, we may assume that x > 0, y > 0
and I = [0,]I]]. After reindexing if necessary, we may assume without loss of
generality that we can find ¢; > 0, d; > 0, and C; > 0 such that ¢; < d; < C},
Iri(x)] = diz™ + o(x™), and |s;(z)] = djz™ + o(x®). We split I into several
subintervals: 0 < y < cpa®, gz® < y < Ciz®, Cipqz@+t < y < ¢ga®, and
Chz® <y < |I| and separately treat the each case.

Case 1. 0 <y < cpz™

If0 <y <cpz®, then

g(z,y) ~ayPr, and  f7 (x,y) ~ atmyPr
Since
eD,, + 2 1 1

44 a < - -
(4.4) 2(B,+1) B,+1p’

eD, —2aB, 1 —pa 1

2(1 — 2a) p(1 —2a) '
Consequently,
ena® 1 ene™™ o 2adn  eDy-20By 1
/ K(z,y)——a—dy ~ / @ 20=2e) 202 —— o —dy
0 yp(lf%t) 0 ym

1 [E(CnéaDn) —aA,

an
pT-%a —aaan—T—aan]+an.

IA
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The desired estimate is followed by

1 e(Cp+aDy) an 1—pa
- An - an - - n n
—2a 2 i T P e e

1 n nDn 2 n 1- mn
(Cn +a ) +2a + a —a(l+a, + A, +a,By)
1 -2« 2 P

v

0.

Case 2. Cijz™ <y < ¢py1x®+t

If Ciz® <y < e+,

g(z,y) ~x%yP, and  f (x,y) ~ aMyP

Therefore

Clwal 1
/ K(z, y)ﬁdy

Curyz®i+1 gy P—2a)

ay

azr eC; Ajo eD;  Bja _ 1-pa

~ r2(0-2a) 1—2@y2(1—2a) T—2a p(172a)dy
Cryz®i+l

eCy Aja ca;D;  a;Bja (1—pa)a,
p2IA-2a) 1-2a 12(1-2a)  1-2a _ p(i-2a) ta

IN

cC;  Aa 5al+1Dl7al+1Bla7(lfpa)al+l+a
+ x20-20)  T-2a p2(1-20) 1—2a p(l—2a) i+1

<G Aje _eqDy @ Bie (I-pajag
r20—2a)  T-2a p2(1-2a) 1-2a  p(1-2a) l

IN

€Ci41  Ajpie a1 Dy a4 Bipie (A-pajajyg +a
4+ x20-20) " T-2a g 2(1-2a) 1—2a p(1—2a) i+1

where we use the following for the last inequality

(4.5) Cr+a1Dy=Cip1 + a1 Dy and A+ a1 B; = Ajp1 + a1 By

Case 3. Ciz™ <y < |I

If Cham <y < |1,

g(z,y) ~a%yPo, and  fl (x,y) ~ a0y
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By using (4.5) again, we obtain

|1 1 e A 1] D B
_<Cg _ «4q _€Dg _ «Bg
/ K(m,y)ﬁdy ~ p20-2a) 1-2a / y2(1—2(x) T—2a dy

Ciz1 yrp(—2a) Crza1
eC, aA eDga aBga
< xQ(l—ga) — T (1 + 1’2(1—023‘) -5 +‘11)
«Co _ aAg E(Co+a1D0)_oc(A0+alBO)+a
< g2-20) 1I-2a +x 2(1—2a) 1—2a 1
eCo  aAg «(C1+ayDy)  a(Ar+arBy) |,
= g20-2a) T-2a 4 g~ 2(1-2a) 1—2a L
Since
a < GC() + 1 1
T 2(1+A4)) 14+ A4pp
and
< G(Cl + CL1D1) —+ aq 1—a 1
«

_2(1—|—a1—|—A1+alBl) ].-|-G/1-|-141—|—(L1B157

111 1 _ _l-pa
/ K(z,y)——a—dy <z~ 70729,
Ciz91 yp(1*20<)

which finishes the treatment of Case 3.
Case 4. ™ <y < Ciz™
If gz <y < Ciz*,

glw,y) ~ aCiyP 11 ly — si(2))],
cz®<|s; ()| <Crz™

fry(xy) ~ atoyP II ly = ri(2)|.

cz <|r;(z)|<Craz*t
To treat this case we need finer decomposition of the domain of integration so we
start the second step.

Step II To do this we introduce the following notation:

Si = A{ri(z)|ri(z) = ¢’z + o(z™)}.
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We assumed that for all 7;(x) and s;(z) satisfying

qx® <|rj(z)|, |sj(x)| < Ciz*,

|rj(x)] and |s;(z)| have the same leading term d;z*, that is,

Irj(x)] = diz® + o(x®) and |s;(z)] = djz® + o(x™).

If we set rj(z) = ¢f'a™ + o(x™), we have three possible cases: (i) Im(cf*) # 0, (ii)

e <0, and (iii) ¢ > 0. In (i) and (ii), we have

ly = rj(z)] ~ 2

if y is in the range {¢z™ <y < Cjz*}. Hence we may assume that ¢f = d; > 0.

Now we define a coordinate transformation 77 so that

m(z,y) = (x,y + cf'z).

If we rewrite the integral in terms of y;, we have

Crz 1 (1—pa)ay Czl
/ K(z,y)———dy < x 7020 / K(z,y1 + cf'z™)dy,
C

1zl yr1-2a) —Cz™
_ (1—pa)ay 0 o
= g p0-z® K(z,y1 + ¢ffx™)dy;
—Cx™

(1—paja;

Cx®
4+ pd-2a) / K(x, Y1+ C?xaz)dyl
0

= L +14.

Since the treatment of I; 1 is similar to that of I; _, we only treat I; .. To do this

we may assume that we can find ¢; 7, d;,;/, and Cy » such that 0 < ¢;;r < djyr < Cppr,

|rl(x) — Clamal| = dl,l/xal’(ﬂl) + 0(1»‘11,’(771)),



26 MALABIKA PRAMANIK AND CHAN WOO YANG

and

|s1(x) — o | = dypa™ (M) 4 oz (1),

We decompose the region {(z,7) : 0 < y < Cz®} into several subregions: 0 <
y < Cl,nlxanl(nl)’ Cl,lmm(’ll) <y < Ca™, Cl)l,_,'_lxazwl(m) <y< Clylll'all(nl), and
C l’xal/("l) <y<Q pxal/("l).

Case 1. 0 <y < ¢pp,x (M)

In this case we have

Cl,nlwanl (n1)
/ K(x,y + cf'a )dy,
0
ny r4n1 (n1)

- / 73w (O ()40, (1) Doy (1)) 3585 (A (1) (1) By () gy
0

= % (m)xz(lfiza)(cnl (m)+an, (m)Dn, (nl))x%@“nl (m)+an, (m)Bn, (m1)) .

To show the desired inequality we have to show

_m + an, (m) + 2(1%%[)(07»1(771) +an, (1) Dn, (1))
o 1 —pa

(Any () + @ (11) B () +

12« (1-2a) =

To show this we factor out ﬁ and simplify the left-hand side to get

1

(4.6) %0

(01 @) + §Cou ) + 0 () Do 1) + 200, ) o

where C" = A, (m) + an, (M) Bn, (M) + 2an, (1) — a;. Now it is easy to see that

(4.6) is nonnegative because of the assumption that (1/p, a) € A.
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Case 2. Cl7l,+1xal’+l(771) S Y S Cl’l,xal’(nl)

q ,;p“l’("l)
/ K(z,y1 + 'z )dy,

ayryq(n1)
Cy g VL

a;r(ny)
/Cuwl eCp(n)  Ap(me €Dy (ny)  By(n)e
~

r20-2a) T I-2«a y2(1—20)7 1—2a dy1
C a1 ()
1,141
< xal/(m)xm(cu("71)+azl(ﬂl)Dz/(ﬂl))xﬁ(Az/(771)+az/(771)BL/(771))
4 xaz’+1(ﬂl)xm(cl’(’71)+al'+1(771)Dw(m))x%(flz'(771)+¢11'+1(771)BU(711))

< 20 (1) g ar=zay (Cv (m)+aw (1) Dy (m) 4. 7=55 (Ay (n1)+ay (11) By (m))

+ xa,zﬂ(m)xm(Cwﬂ(m)+au+1(m)Dz/ﬂ(m))xﬁ(Auﬂ(m)+az/+1(m)Bz/+1(m))
where we use the following identities for the last inequality
Av(m) + av(m)Br(m) = Avga(m) + arga(m)Bra(nm)
Cr(m) + avs1(m)De(m) = Crya(m) + av1(n1) Dyga(m).
Case 3. Cp a1 () <y < Oz@

Cz*l
/ K(x,y1 + cffz®)dys

Clylmal(ﬂl)

Cy Aja ea; D a;Bj«
< pIA-2a) 1-%a pI(i-2a)  1-2a TH

4+ 01 (m) parseay (Cr(m)+ar(m)Di(m)) ;. 7=55 (Ar (1) +a1 () Bi(m))

Case 4. ¢ pa@ (M) <y < Cppatv(m)

It remains to show

 (—paday Culajal/(m) _ (1—pa)
x~ a2 K(z,y1 + ¢ffz™)dy; < Cxri-2a7,
(&

l,l’wall(nl)
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To treat this case we start the third step which has the same argument with the
second step. We repeat the same argument until we completely resolve the roots
of fy, and g, that is, until there is only one root in the range of the integral. If we
have only one root r(z) in the range of the integral and if the root is a real root,
we have to integrate |y — ()|~ (2 Bnon (M =€Pnw ()/2(1=20) with respect to y near
r(x), where 7 is a coordinate change defined by n(z,y) = (x,y — r(z)) and n(n)
is the largest index of a;(n). The convergence of the integration is guarranteed

because by using (1.1) we have

a 6l)n(n) (77)) +2
4.7 < 2By (1) +2)

and (4.7) implies

2OéBn(n) (77) - eDn(n) (77)

1.
2(1 - 2a) <

We can easily see that we have the desired estimates for all integrals which will
occur in each step. O
To finish the proof of Theorem 1.4 we interpolate Lemma 4.3 with Theorem

4.1. ]

Remark 4.4. 1. In the proof of Theorem 1.4, we use the strict inequalities at
two places (4.4) and (4.7). When we prove (4.3), we have to use one more strict

inequality

GC() 1 1
+ —.
2(1+A40) 14+ App

(4.8) a <

Therefore, Theorem 1.3. can be extended to the boundary of A when (1/p,a) is
not on any of a line which bounds the region in (4.4), (4.7) or (4.8). It would be

interesting to obtain LP decay estimates when (1/p, «) is on one of these lines.
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2. Let 0; and do be the weighted Newton distance and the optimal decay rate,
respectively. We give an example showing that in general the optimal decay rate for
L? operator norm of Ty can be smaller than the weighted Newton distance which

has been introduced in [Pr]. We take f and g such that

ffbly(xa y) = (y - J?N)Rl (y — J;N — mkN)Ml

g(z,y) = (y—a —a?)f

Without any change of variable, we have
a1 = N, A1 = N(R1 +M1), Bl = O, Cl :NRQ, and D1 =0.
One can check that

. 1+ N+ eNRy
"1+ N+ N(Ri+ M)

1

By using the change of variables 7 : (z,y) — (z,y — V), we have

0,2(’17) = kiN, A2 = k‘]\/v]\fl7 BQ = R, C2 = QNRQ, and DQ =0.
We then have

14 2kN — N +¢€(2NRy)
 142kN — N +kN(M; + Ry)’

2
Given N there exists k such that

2N 2

5y ~ - .
>TANFN(OM +R) 2+ M, +R;

For large N, we have

14+ €eRy

Sp v —— 2
YUY R M,

Now choosing € and Ry so that eRy > 1, we get do < dy.
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3. Theorem 1.3 may be expressed in one of the following two equivalent forms.

Fix A > A\g for some ), sufficiently large. A set of the form

B = {(x,y) €suppx |a <z <b, c <y <d}

is defined to be a “testing box” if there exist functions F}, F5 : R — R depending

on B satisfying

sup |A(f(z,y) — Fi(z) — Fa(y))| <
(z,y)€B

N

Let § denote the class of all testing boxes.

Statement 1. For large values of A,

[[Tx[|z2—r2 ~ max {sup IBI* inf |g(z,y)|?, >\_1/2} :
Beg (z,y)eB
It suffices to consider a subfamily of §. Let us make the following definition:

Definition 4.5. A vector (a,b,c¢,d) with b > a > 1, ¢,d > 0 is called an admissi-
ble tuple if there exists a Puiseux series ¢ with leading exponent a and constants

ki ri,m;, 1 = 1,2 such that for all A sufficiently large
(1)

b—a-+1

B = {(x’y);kfl/c+7’1/\7b_i+lSxé)\*l/c+r2>\’ e

)

gAY ma ATV < g 4 mp ATV

is a “testing box”, and
(2)

kA < sup g(@,y)| < keATYC
(z,y)€B

Let 91 denote the collection of all admissible tuples.
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Statement 2. For large values of A,

I Tx]|L2—p2 ~ A79/2

where

. . 1+2b—a+ed
6 = min min —— 15
(a,b,c,d)eN c
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