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Abstract. In this paper, we formulate necessary conditions for decay rates

of Lp operator norms of weighted oscillatory integral operators on R and give

sharp L2 estimates and nearly sharp Lp estimates.

1. Introduction

Suppose f and g are real-analytic, real-valued funtions in a neighborhood V

of the origin in R2 with f(0, 0) = g(0, 0) = 0 and let χ be a smooth function of

compact support in V . We consider the oscillatory integral operator

Tλϕ(x) =
∫

R
eiλf(x,y)|g(x, y)|ε/2χ(x, y)ϕ(y)dy,

where ε is any positive number. In this paper we will study the decay rate in λ of

||Tλ||Lp→Lp as λ→∞.

The case where g(x, y) = 1 has been studied in [Gr], [GS3], [PSt1], [PSt2],

[PSt3], and [R]. In [PSt1] and [PSt2], Phong and Stein considered a case where the

phase function f(x, y) is a real homogeneous polynomial and they obtained sharp

decay estimates for ||Tλ||L2→L2 . In [PSt3], they took into account of the more

general case where the phase function f(x, y) is a real analytic function and they

proved ||Tλ||L2→L2 ∼ λ−δ where δ is the reduced Newton distance of f(x, y). In
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[R] Rychkov developed the ideas of Phong and Stein in [PSt3] and Seeger in [S1]

to obtain sharp L2 decay estimates for the case where the phase function f(x, y) is

a real smooth function with the condition that the formal power series expansion

of f ′′xy at the origin does not vanish. He proved ||Tλ||L2→L2 ∼ λ−δ, where δ is

the reduced Newton distance of the formal power series expansion of f(x, y) at the

origin, with a loss of a certain power of log λ in the case where all solutions r(x)

of f ′′xy(x, r(x)) = 0 have the same asymtotic fractional power series expansion with

the leading power 1. In [Gr], Greenblatt gave a new proof for the theorem of Phong

and Stein in [PSt3]. For Lp estimates, Greenleaf and Seeger obtained sharp decay

estimates [GS3]. They considered oscillatory integral operators in Rn with a real

smooth phase function with the assumption of two-sided fold singularities. They

established sharp Lp − Lq decay estimates of the oscillatory integral operators. In

[S2], Seeger formulated optimal Lp regularity of generalized Radon transforms on

R2 and he obtained sharp Lp regularity estimates except endpoints. In [Y], sharp

Lp decay estimates for Tλ have been established excluding two end-point estimates.

The case where g(x, y) = f ′′xy(x, y) has been studied in [PSt4]. In [PSt4] Phong

and Stein proved best possible decay estimate, that is, ||Tλ||L2→L2 ∼ λ−1/2 when

g(x, y) = f ′′xy(x, y) and ε = 1/2. We wish to investigate the improvement in the

decay rate of ||Tλ||Lp→Lp when f is unrelated to g.

Higher dimensional case even without any damping factor has not been under-

stood well. There have been a few L2 estimates of special cases [C1], [C2], [GS3],

[GS4], [PaSo]. Sharp L2 estimates under the assumption of two-sided fold singu-

larities were obtained in [PaSo]. Optimal estimates with one-sided fold singularity
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have been established in [C2] and [GS1]. Various types of higher order singulari-

ties have been treated in [C1], [GS2], and [GS4]. We recommend [GS5] as a more

detailed and organized survey on this subject.

The case where the weight g(x, y) is not related to f(x, y) has been considered by

the first author in a different context [Pr]. In [Pr] she introduced weighted Newton

distance to treat the weighted integral. We shall use some notions in [Pr] and we

briefly describe them. We start with factorizing f ′′xy(x, y) and g(x, y)

f ′′xy(x, y) = U1(x, y)xα1yβ1
∏

(y − rν(x))

g(x, y) = U2(x, y)xα2yβ2
∏

(y − sµ(x))

where Ui i = 1, 2 are real analytic functions with Ui(0, 0) 6= 0, αi’s and βi’s are

non-negative integers and rν(x)’s and sµ(x)’s are Puiseux series of the form

rν(x) = cνx
aν +O(xbν )

sµ(x) = cµx
aµ +O(xbν )

where bη > aη are rational numbers and cη 6= 0. We reindex the combined set of

distinct exponents aν and aµ into increasing order so that

0 < a1 < a2 < · · · < aN .

We define

ml = #{ν : rν(x) = cνx
al + · · · , cν 6= 0}

nl = #{µ : rµ(x) = cµx
al + · · · , cµ 6= 0}
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and we call ml and nl the generalized multiplicity of f ′′xy and g, respectively, corre-

sponding to the exponent al. Now we define

Al = α1 +
∑l

i=1 alml, Bl = β1 +
∑N

i=l+1mi

Cl = α2 +
∑l

i=1 alnl, Dl = β2 +
∑N

i=l+1 ni.

Then {(Al, Bl)} and {(Cl, Dl)} are sets of vertices of the Newton diagrams of f ′′xy

and g, respectively. The number of common roots of f ′′xy and g is an important

information to obtain optimal estimates. To extract the information we use a

coordinate transformation η given by

(x, y) 7→ (x, y − q(x)) or (x, y) 7→ (x− q(x), y),

where q is a convergent real-valued Puiseux series in a neighborhood of the origin.

For f ′′xy ◦ η and g ◦ η we can define previous notions such as Al, Bl, Cl, Dl, and al

in the same way. To avoid the confusion we use the notations Al(η), Bl(η), Cl(η),

Dl(η), and al(η) to specify the coordinate transformation η. To describe optimal

decay rate of ||Tλ,ε||Lp→Lp we shall need the following notations. Let K = [0, 1]×R.

We define subsets A0, Al, and Al′(η) of K as

A0 =
{

(
1
p
, α) ∈ K : α ≤ 1

p
, and α ≤ 1− 1

p

}
,

Al =
{

(
1
p
, α) ∈ K : α ≤ ε(Cl + alDl) + 2al

2C
+

1− al

C

1
p

}
,

Al′(η) =
{

(
1
p
, α) ∈ K : α ≤ ε(Cl′(η) + al′(η)Dl′(η)) + 2al′(η)

2C ′
+

1− al

C ′
1
p

}

where C = 1 + al +Al + alBl and C ′ = Al′(η) + al′(η)Bl′(η) + 1 + 2al′(η)− al. Set

A1 =
⋂
l

Al and A2 =
⋂
η

⋂
l′

Al′(η).
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Now we finally define A as

A = A0 ∩ A1 ∩ A2.

Remark 1.1. When we define Al′(η) we include the case where al′(η) = ∞. In this

case we assume that

(1.1) Al′(η) =
{

(
1
p
, α) ∈ K : α ≤ εDl′(η) + 2

2(Bl′(η) + 2)

}
.

Theorem 1.2 (Necessity). If Tλ is bounded on Lp(R) with ||Tλ||Lp→Lp ≤ O(λ−α),

then (1/p, α) ∈ A.

Theorem 1.3 (L2 estimates). If (1/2, α) ∈ A, then ||Tλ||L2→L2 ≤ O(λ−α)

Theorem 1.4 (Lp estimates). If (1/p, α) ∈ int(A), then we have

||Tλ||Lp→Lp ≤ O(λ−α).

Remark 1.5. In theorem 1.4 we only have estimates in the interior of A. During the

proof of the theorem one can easily observe that we have estimates on some part

of the boundary of A. We shall discuss this in detail in part 1 of the final remark.

2. Proof of theorem 1.2

Proof of Theorem 1.2. Suppose that Tλ is bounded on Lp with ||Tλ||Lp→Lq ≤ O(λ−α).

We shall show that (1/p, α) ∈ A. Suppose f ′′xy(x, y) =
∑

p,q≥0 cpqx
pyq. Then we

have

f(x, y) =
∑

p,q≥0

cpq
xp+1yq+1

(p+ 1)(q + 1)
+ F1(x) + F2(y)

=
∑

p,q≥1

c̃pqx
pyq + F1(x) + F2(y)

where F1(x) and F2(y) are real analytic. Note that the Newton diagram of∑
p,q≥1 c̃pqx

pyq is same as the reduced Newton diagram of f . We fix l. Let C =
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1 +Al + al(Bl + 1) and R > 0 is a constant to be specified. Now, for large positive

λ, we define the function ϕλ, ψλ by

ϕλ(y) =


e−iλF2(y) if R ≤ yλal/C ≤ R+ c1

0 otherwise,

and

ψλ(x) =


e−iλF1(x) if R ≤ xλ1/C ≤ R+ c1

0 otherwise.

We claim that for any ε > 0, in the support of ϕλ(y)ψλ(x) we have:

∣∣∣λf(x, y)− λF1(x)− λF2(y)−
∑

′c̃pqR
q
∣∣∣ < ε,

where the sum
∑′ is taken over (p, q) that belong to the face of the reduced Newton

diagram with equation p + alq = C, as long as c1 is taken to be small in terms of∑′ |c̃pq|Rq and then λ is taken to be large. To prove the claim, first we note that

if 0 < c1 < R is sufficiently small then we have

∣∣∣∑ ′c̃pq(λxpyq −Rq)
∣∣∣ ≤

∑
′|c̃pq||λxpyq − 1|

≤
∑

′|c̃pq|[(1 +
c1
R

)q(1 + c1)p − 1] ·Rq

<
ε

2
.

Also, because of the convex nature of the Newton diagram, p+alq > C for all other

(p, q) such that c̃pq 6= 0, so,

λ

∣∣∣∣∣∣
∑

(p,q);p+alq 6=C

c̃pqx
pyq

∣∣∣∣∣∣ < ε

2
.
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If we take, say ε < π/2 then this shows that

| < Tλϕλ, ψλ > | =
∣∣∣∣∫

R2
eiλf(x,y)|g(x, y)| ε

2χ(x, y)ϕλ(y)ψλ(x)dydx
∣∣∣∣

=

∣∣∣∣∣
∫

(x,y)∈Sλ

ei[λf(x,y)−λF1(x)−λF2(y)]χ(x, y)|g(x, y)| ε
2 dydx

∣∣∣∣∣
=

∣∣∣∣∣
∫

(x,y)∈Sλ

ei[λf(x,y)−λF1(x)−λF2(y)−
∑′ c̃pqRq ]|g(x, y)| ε

2 dydx

∣∣∣∣∣
where Sλ = {(x, y)|1 ≤ λ1/Cx ≤ 1 + c1, R ≤ yλal/C ≤ R+ c1}. Hence we have

| < Tλϕλ, ψλ > | ≥ C

∫
(x,y)∈Sλ

χ(x, y)|g(x, y)| ε
2 dydx.

Let R > 2 · max{|c|; y = cxal + · · · is a root of g} and R > 1. Then g(x, y) ∼

|x|Cl |y|Dl on the support of ϕλ(y)ψλ(x). We therefore have

| < Tλϕλ, ψλ > | ≥ Cλ−
Cl+alDl

C · ε
2λ−

al+1
C

as λ→∞. Hence, we have

| < Tλϕλ, ψλ > |
||ϕλ||p · ||ψλ||p′

≥ C
λ−

Cl+alDl
C · ε

2λ−
al+1

C

λ−
al
Cp−

1
C (1− 1

p )

≥ Cλ−
ε(Cl+alDl)+2al

2C − 1−al
C

1
p ,

which implies

α ≤ ε(Cl + alDl) + 2al

2C
+

1− al

C

1
p
.

Therefore (1/p, α) ∈ A1.

We fix a root y = r(x) in Sl = {ri(x)|ri(x) = cxal + · · · } and l′. Suppose

r(x) = r̃(x) +O(|x|al′ (η)). We define ϕλ and ψλ as

ϕλ(y) =


e−iλF2(y) if r̃(λ−1/C′

) +Rλ−al′ (η)/C′ ≤ y ≤ r̃(λ−1/C′
) + 2Rλ−al′ (η)/C′

0 otherwise,
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and

ψλ(x) =


e−iλF1(x) if λ−1/C′ ≤ x ≤ λ−1/C′

+ c1λ
−(al′ (η)−al+1)/C′

0 otherwise

where C ′ = Al′(η) + al′(η)Bl′(η) + 1 + 2al′(η) − al, c1 and R are constants, and

F1, F2 are real-valued functions to be specified later. On the support of ϕλ(y)ψλ(x)

we have

|y − r(x)| ≤ |r̃(λ−1/C′
) + 2Rλ−al′ (η)/C′

− r̃(x) +O(λ−al′ (η)/C′
)|.

Suppose r̃(x) = αxal + βxbl + · · · where without loss of generality α > 0, β > 0.

Then

|y − r(x)| ≤ |αλ−al/C′
+ βλ−bl/C′

+ 2Rλ−al′ (η)/C′
− αλ−al/C′

− β[λ−1/C′
(1 + c1λ

−(al′ (η)−al)/C′
+O(λ−al′ (η)/C′

)]|

≤ 3Rλ−al′ (η)/C′

and

|y − r(x)| ≥ |Rλ−al′ (η)/C′
+ r̃(λ−1/C′

)− α[λ−1/C′
(1 + c1λ

−(al′ (η)−al)/C′
)]al

− βλ−bl/C′
+ o(λ−al′ (η)/C′

)| ≥ R

2
λ−al′ (η)/C′

.

Let (x0(λ), y0(λ)) be a fixed point on the support of ϕλ(y)ψλ(x). Then for any

(x, y) in the support

∫ x

x0

∫ y

y0

f ′′xy(s, t)dtds =
∫ x

x0

[f ′x(s, y)− f ′x(s, y0)]ds

= f(x, y)− f(x0, y)− f(x, y0) + f(x0, y0).(2.1)
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Let F2(y) = f(x0(λ), y), F1(x) = f(x, y0(λ)) − f(x0(λ), y0(λ)). We notice that for

(s, t) in the support of ϕλ(y)ψλ(x),

f ′′xy(s, t) ∼ |t− r̃(s)|Bl′ (η)|s|Al′ (η)

∼ RBl′ (η)λ−
A

l′ (η)+a
l′ (η)B

l′ (η)

C′

Therefore we have

∫ x

x0

∫ y

y0

f ′′xy(s, t)dtds ∼ RBl′ (η)+1λ−
A

l′ (η)+a
l′ (η)B

l′ (η)

C′ λ−
a

l′ (η)

C′ · c1λ−
a

l′ (η)−al+1

C′

∼ RBl′ (η)+1 · c1 · λ−1

By choosing c1 sufficiently small, we can ensure that for some 0 < ε < π/4

|λf(x, y)− λf(x0, y)− λf(x, y0) + λf(x0, y0)| < ε.

Hence we have

| < Tλϕλ, ψλ > | ≥
∫

(x,y)∈Sλ

|g(x, y)| ε
2 dydx

≥ λ−
ε(C

l′ (η)+a
l′ (η)D

l′ (η))

2C′ λ−
a

l′ (η)

C′ λ−
a

l′ (η)−al+1

C′ .

This yields

| < Tλϕλ, ψλ > |
||ϕλ||||ψλ||

≥ Cλ−
ε(C

l′ (η)+a
l′ (η)D

l′ (η))+2a
l′ (η)

2C′ − 1−al
C′

1
p ,

which implies

α ≤ ε(Cl′(η) + al′(η)Dl′(η)) + 2al′(η)
2C ′

+
1− al

C ′
1
p
.

Therefore (1/p, α) ∈ A2.
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Finally we shall show that (1/p, α) ∈ A0. There exists (x0, y0) such that

|g(x0, y0)| ≥ k > 0. Let

F1(x) =
∞∑

i=1

(∂i
xf)(x0, y0)

i!
(x− x0)i

and

F2(y) =
∞∑

j=1

(∂j
yf)(x0, y0)

j!
(y − y0)j .

We define ψλ(x) and ϕλ(y) by

ϕλ(y) =


e−iλF2(y) if y0 ≤ y ≤ y0 + λ−1

0 otherwise,

ψλ(x) =


e−iλF1(x) if x0 ≤ x ≤ x0 + c1

0 otherwise.

By choosing a small number c1 > 0 we have

|λ(f(x, y)− f(x0, y0)− F1(x)− F2(y))| ≤ π/4.

Hence we have ∣∣∣∣e−iλf(x0,y0)

∫
Tλϕλ(x)ψλ(x)dx

∣∣∣∣ ≥ Cλ−1

and

||fλ||Lp ∼ λ−1/p and ||gλ||Lp′ ∼ 1.

Therefore we have α ≤ 1 − 1/p. By exchanging the role of fλ and gλ we have

α ≤ 1/p. This shows that (1/p, α) ∈ A0. �
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3. Proof of theorem 1.3

Proof of Theorem 1.3. Recall that the quantities al, al′(η), Al, Bl, Cl, Dl, etc. can

be read off the generalized Newton diagrams of f ′′xy and g. Let

f ′′xy(x, y) =
∏

ν∈Γf′′xy

(y − rν(x)); g(x, y) =
∏

µ∈Γg

(y − sµ(x))

and suppose 0 < a1 < a2 < · · · < al < al+1 < · · · < aN is the combined set

of leading exponents of rν ’s and sµ’s(arranged in increasing order of magnitude,

without counting multiplicities). Without loss of generality, let a1 ≥ 1. We write

Tλ
jkϕ(x) =

∫
R
eiλf(x,y)|g(x, y)|ε/2χ(x, y)χj(x)χk(y)ϕ(y)dy

where

χi(z) =


1 if 2−i ≤ z ≤ 2−i+1

0 otherwise.

We consider four ranges of j, k,:

• alj � k � al+1j;

• k � a1j;

• k � aN ;

• k ≈ alj,

where A � B, A � B, and A ≈ B mean that A + C < B, A > B + C, and

A − C < B < A + C respectively for some C > 0 which makes the following

arguments hold true. Since the treatments of the first three cases are similar, we

only consider two cases: alj � k � al+1j; k ≈ alj.

Case 1: alj � k � al+1j

In this case

f ′′xy ∼ 2−Alj2−Blk, g ∼ 2−Clj2−Dlk
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on the support of χj(x)χk(y). We have the following estimates of ||Tjk||:

||Tjk|| ≤ C(λ2−Alj−Blk)−1/22−ε(Clj+Dlk)/2,(3.1)

||Tjk|| ≤ C2−(j+k)/22−ε(Clj+Dlk)/2.(3.2)

If we put k = alj + r with 0 � r � (al+1 − al)j, we can rewrite (3.1) and (3.2) as

||Tjk|| ≤ min
{
λ−1/22j(Al−εCl)/22k(Bl−εDl)/2, 2−j(1+εCl)/22−k(1+εDl)/2

}
≤ min

{
λ−1/22j[(Al+alBl)−ε(Cl+alDl)]/22r(Bl−εDl)/2,

2−j[1+al+ε(Cl+alDl)]/22−r(1+εDl)/2
}
.

First we take into account of the case where

λ−1/22j[(Al+alBl)−ε(Cl+alDl)]/22r(Bl−εDl)/2 ≤ 2−j[1+al+ε(Cl+alDl)]/22−r(1+εDl)/2,

which is equivalent to

2j(1+al+Al+alBl)/2 ≤ λ1/22−r(1+Bl)/2

i.e.,

(3.3) 2j/2 ≤ λ
1

2(1+al+Al+alBl) 2−
r(1+Bl)

2(1+al+Al+alBl) .

By the choice of r we also have

(3.4) 2j/2 ≥ 2
r

2(al+1−al) .

By combining (3.3) and (3.4) we obtain

2
r

2(al+1−al) ≤ λ
1

2(1+al+Al+alBl) 2−
r(1+Bl)

2(1+al+Al+alBl) ,
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which implies

(3.5) 2
r
2 ≤ λ

1
2 ·

al+1−al
1+al+1+Al+al+1Bl .

Subcase 1: Al + alBl ≥ ε(Cl + alDl)

In this case

∑
j

||Tjk|| ≤ λ−1/2λ
(Al+alBl)−ε(Cl+alDl)

2(1+Al+al+alBl) 2
r
2 I

where

I = (Bl − εDl)−
(1 +Bl)[(Al + alBl)− ε(Cl + alDl)]

1 + al +Al + alBl
.

If I < 0, then

∑
(j,k); alj�k�al+1j

||Tjk|| ≤ λ
− 1

2 ·
1+al+ε(Cl+alDl)
1+al+Al+alBl .

If I ≥ 0, then

∑
(j,k); alj�k�al+1j

||Tjk|| ≤ λ
− 1

2 ·
1+al+ε(Cl+alDl)
1+al+Al+alBl λ

1
2 ·

(al+1−al)I

1+al+1+Al+al+1Bl

≤ λ
− 1

2 [
1+al+ε(Cl+alDl)
1+al+Al+alBl

−
(al+1−al)I

1+al+1+Al+al+1Bl
]
.

We claim that

(3.6)

1 + al + ε(Cl + alDl)
1 + al +Al + alBl

− (al+1 − al)I
1 + al+1 +Al + al+1Bl

=
1 + al+1 + ε(Cl + al+1Dl)
1 + al+1 +Al + al+1Bl

.

By rewriting (3.6) we have to show

[1 + al + ε(Cl + alDl)][1 + al+1 +Al + al+1Bl]− (al+1 − al)

× [(Bl − εDl)(1 + al +Al + alBl)− (Bl + 1){Al + alBl − ε(Cl + alDl)}]

= [1 + al+1 + ε(Cl + al+1Dl)][1 + al +Al + alBl].
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Now we take derivatives of the left and right hand sides with respect to al+1:

d

dal+1
(LHS) = (1 +Bl)[1 + al + ε(Cl + alDl)]

− [(Bl − εDl)(1 + al +Al + alBl)− (Bl + 1){Al + alBl − ε(Cl + alDl)}]

= (1 +Bl)[1 + al + ε(Cl + alDl) +Al + alBl − ε(Cl + alDl)]

− (Bl − εDl)(1 + al +Al + alBl)

= (1 + εDl)(1 + al +Al + alBl),

d

dal+1
(RHS) = (1 + εDl)(1 + al +Al + alBl).

Also if al+1 = al then it is easy to see that the left hand side is same to the right

hand side. Thus the claim is proved.

Subcase 2: Al + alBl < ε(Cl + alDl)

In this case

∑
j

||Tjk|| ≤ λ−
1
2 2

r
2

Al+alBl−ε(Cl+alDl)
al+1−al 2

r
2 (Bl−εDl)

≤ λ−
1
2 2

r
2

Al+al+1Bl−ε(Cl+al+1Dl)
al+1−al .

If Al + al+1Bl ≥ ε(Cl + al+1Dl), then (3.5) yields

∑
(j,k); alj�k�al+1j

||Tjk|| ≤ λ−
1
2λ

1
2 ·

Al+al+1Bl−ε(Cl+al+1Dl)
1+al+1+Al+al+1Bl

≤ λ
− 1

2 ·
1+al+1+ε(Cl+al+1Dl)
1+al+1+Al+al+1Bl

= λ
− 1

2 ·
1+al+1+ε(Cl+1+al+1Dl+1)
1+al+1+Al+1+al+1Bl+1
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If Al + al+1Bl < ε(Cl + al+1Dl), then

∑
(j,k); alj�k�al+1j

||Tjk|| ≤ λ−
1
2 .

Now we consider the case where

(3.7) 2j/2 ≥ λ
1

2(1+al+Al+alBl) 2−
r(1+Bl)

2(1+al+Al+alBl) .

(3.4) still holds in this case. We consider two cases:

(3.8) λ
1

2(1+al+Al+alBl) 2−
r(1+Bl)

2(1+al+Al+alBl) ≥ 2
r

2(al+1−al) ;

(3.9) λ
1

2(1+al+Al+alBl) 2−
r(1+Bl)

2(1+al+Al+alBl) < 2
r

2(al+1−al) .

We rewrite (3.8) as

(3.10) 2
r
2 ≤ λ

al+1−al
2(1+al+1+Al+al+1Bl+1) .

By using (3.7) we obtain

∑
j

||Tjk|| ≤ λ−
1
2λ

(Al+alBl)−ε(Cl+alDl)
2(1+Al+al+alBl) 2

r
2 I .

If I < 0 then we have a convergent geometric series which we sum to obtain

∑
j,k

||Tjk|| ≤ λ
− 1

2 ·
1+al+ε(Cl+alDl)
1+al+Al+alBl .

If I ≥ 0 then (3.10) and (3.6) yield

∑
j,k

||Tjk|| ≤ λ
− 1

2 ·
1+al+1+ε(Cl+al+1Dl)
1+al+1+Al+al+1Bl .

Now we rewrite (3.9) as

(3.11) 2
r
2 > λ

al+1−al
2(1+al+1+Al+al+1Bl+1) .
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In this case we use (3.4) to obtain

∑
j

||Tjk|| ≤ 2−
r
2 ·

1+al+ε(Cl+alDl)
al+1−al 2−

r
2 ·(1+εDl).

We then use (3.11) to get

∑
jk

||Tjk|| ≤ λ
−

1+al+1+ε(Cl+al+1Dl)
2(1+al+1+Al+al+1Bl) ,

which is the desired estimate. This completes the treatment of Case 1.

Case 2: k ≈ alj

In this case we choose a real root t(x) of f ′′xy(x, y) = 0 or g(x, y) = 0 and put

y − t(x) ∼ 2−m, m ≥ alj. Let

al ≤ a1(η) < a2(η) < · · · < ak(η) < · · ·

be the set of leading exponents of {rν(x)− t(x); ν ∈ Γf ′′xy
}∪{sµ(x)− t(x); µ ∈ Γg}.

If ak(η)j � m� ak+1j then we have

f ′′xy ∼ 2−Ak(η)j2−Bk(η)m; g ∼ 2−Ck(η)j2−Dk(η)m.

We write

Tλ
j,k,mϕ(x) =

∫
R
eiλf(x,y)|g(x, y)|ε/2χ(x, y)ϕ(y)χj(x)χk(y)χm(y − t(x))dy.

The following estimates hold:

||Tλ
j,k,m|| ≤ C(λ2−(Al′ (η)j+Bl′ (η)m))−1/2(2−(Cl′ (η)j+Dl′ (η)m))ε/2,(3.12)

||Tλ
j,k,m|| ≤ 2−m2j(al−1)/2(2−(Cl′ (η)j+Dl′ (η)m))ε/2.(3.13)

since ∆y ≤ 2−m and ∆x ≤ 2−m2al−1, where ∆y is the maximal variation in y for

a fixed x in the region under consideration and ∆x is defined in a similar way. By
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putting m = al′(η)j + r with 0 � r � (al′+1(η)− al′(η))j, we have

||Tλ
j,k,m|| ≤ min

{
λ−1/22j(Al′ (η)−εCl′ (η))/22m(Bl′ (η)−εDl′ (η))/2,

2j(al−1−εCl′ (η))/22−m(2+εDl′ (η)/2
}

= min
{
λ−1/22j[(Al′ (η)+al′ (η)Bl′ (η))−ε(Cl′ (η)+al′ (η)Dl′ (η))]/22r(Bl′ (η)−εDl′ (η))/2,

2−j[(1+2al′ (η)−al)+ε(Cl′ (η)+al′ (η)Dl′ (η))]/22−r(2+εDl′ (η))/2
}
.

First we consider the case where

λ−1/22j[(Al′ (η)+al′ (η)Bl′ (η))−ε(Cl′ (η)+al′ (η)Dl′ (η))]/22r(Bl′ (η)−εDl′ (η))/2

≤ 2−j[(1+2al′ (η)−al)+ε(Cl′ (η)+al′ (η)Dl′ (η))]/22−r(2+εDl′ (η))/2,

that is,

2j/2 ≤ λ
1

2(A
l′ (η)+a

l′ (η)B
l′ (η)+2a

l′ (η)−al+1)

× 2
− r

2 ·
B

l′ (η)+2
A

l′ (η)+a
l′ (η)B

l′ (η)+2
l′ (η)−al+1 .

Also,

2j/2 ≥ 2
r

2(a
l′+1(η)−a

l′ (η)) .

This implies

2
r
2 ( 1

a
l′+1(η)−a

l′ (η)+
B

l′ (η)+2
A

l′ (η)+a
l′ (η)B

l′ (η)+2a
l′ (η)−al+1 )

≤ λ
1

2(A
l′ (η)+a

l′ (η)B
l′ (η)+2a

l′ (η)−al+1)

which is equivalent to

2
r
2 (Al′ (η)+al′+1(η)Bl′ (η)+2al′+1(η)−al+1) ≤ λ

1
2 (al′+1(η)−al′ (η)),

i.e.,

2
r
2 ≤ λ

1
2

a
l′+1(η)−a

l′ (η)

A
l′ (η)+a

l′+1(η)B
l′ (η)+2a

l′+1(η)−al+1 .
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We therefore have

∑
j

||Tλ
j,k,m|| ≤ λ−1/2λ

1
2

(A
l′ (η)+a

l′ (η)B
l′ (η))−ε(C

l′ (η)+a
l′ (η)D

l′ (η))
A

l′ (η)+a
l′ (η)B

l′ (η)+2a
l′ (η)−al+1

× 2
− r

2
(B

l′ (η)+2)[(A
l′ (η)+a

l′ (η)B
l′ (η))−ε(C

l′ (η)+a
l′ (η)D

l′ (η))]
A

l′ (η)+a
l′ (η)B

l′ (η)+2a
l′ (η)−al+1

× 2
r
2 (Bl′ (η)−εDl′ (η))

≤ λ
− 1

2
2a

l′ (η)−al+1+ε(C
l′ (η)+a

l′ (η)D
l′ (η))

2a
l′ (η)−al+1+A

l′ (η)+a
l′ (η)B

l′ (η) 2
r
2 J ,

where

J = (Bl′(η)− εDl′(η))

− (Bl′(η) + 2)[(Al′(η) + al′(η)Bl′(η))− ε(Cl′(η) + al′(η)Dl′(η))]
Al′+1(η) + al′(η)Bl′(η) + 2al′(η)− al + 1

.

If J < 0, then

∑
j,k,m; al′ (η)j�m�al′+1(η)j

||Tλ
j,k,m|| ≤ λ

− 1
2

2a
l′ (η)−al+1+ε(C

l′ (η)+a
l′ (η)D

l′ (η))
2a

l′ (η)−al+1+A
l′ (η)+a

l′ (η)B
l′ (η) .

If J ≥ 0, then

∑
j,k,m; al′ (η)j�m�al′+1(η)j

||Tλ
j,k,m|| ≤ λ

− 1
2

2a
l′ (η)−al+1+ε(C

l′ (η)+a
l′ (η)D

l′ (η))
2a

l′ (η)−al+1+A
l′ (η)+a

l′ (η)B
l′ (η)

× λ
1
2

(a
l′+1(η)−a

l′ (η))J

A
l′ (η)+a

l′+1(η)B
l′ (η)+2a

l′+1(η)−al+1 .

We claim that

2al′(η)− al + 1 + ε(Cl′(η) + al′(η)Dl′(η))
2al′(η)− al + 1 +Al′(η) + al′(η)Bl′(η)

− (al′+1(η)− al′(η))J
2al′+1(η)− al + 1 +Al′(η) + al′+1(η)Bl′(η)

=
2al′+1(η)− al + 1 + ε(Cl′(η) + al′+1(η)Dl′(η))

2al′+1 − al + 1 +Al′(η) + al′+1(η)Bl′(η)
,
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i.e.,

[2al′(η)− al + 1 + ε(Cl′(η) + al′(η)Dl′(η))][2al′+1(η)− al + 1 +Al′(η) + al′+1(η)Bl′(η)]

− (al′+1(η)− al′(η))[(Bl′(η)− εDl′(η)(Al′(η) + al′(η)Bl′(η) + 2al′(η)− al + 1)

− (Bl′(η) + 2){(Al′(η) + al′(η)Bl′(η)− ε(Cl′(η) + al′(η)Dl′(η))}]

= (Al′(η) + al′(η)Bl′(η) + 2al′(η)− al + 1)[2al′+1(η)− al + 1 + ε(Cl′(η) + al′(η)Dl′(η))].

The claim is proved using the same techniques as before.

Now we have to treat the case where

2j/2 > λ
1

2(A
l′ (η)+a

l′ (η)B
l′ (η)+2a

l′ (η)−al+1)

× 2
− r

2 ·
B

l′ (η)+2
A

l′ (η)+a
l′ (η)B

l′ (η)+2
l′ (η)−al+1 .

Since we can directly apply an earlier argument to handle this case, we omit the

detail here.

If m ≈ al′(η)j, then there exists t̃ ∈ such that y− t̃(x) is “small”. Put y− t̃(x) ∼

2−p and repeat the same arguments as before. Then we conclude

||Tλ|| ≤ Cλ−δ/2

where

δ = min
(

1
2
,
1
2
· 1 + al + ε(Cl + alDl)

1 + al +Al + alBl
,
1
2
· 1 + 2al′(η)− al + ε(Cl′(η) + al′(η)Dl′(η))

1 + 2al′(η)− al + (Al′(η) + al′(η)Bl′(η))

)
.

�
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4. Proof of theorem 1.4

In this section we will prove theorem 1.4. We construct an analytic family

of operators T β
λ so that when Re(β) = 1/2, T β

λ is a damped oscillatory integral

operator of the form

T
1/2
λ ϕ(x) =

∫
eiλf(x,y)|f ′′xy(x, y)|1/2χ(x, y)ϕ(y)dy,

whose L2 decay estimate we know of. When Re(β) = −α/(1− 2α), we shall prove

T β
λ is bounded on L

p(1−2α)
1−pα , which yields theorem 1.4 by complex interpolation in

[StW].

Proof of Theorem 1.4. We consider an analytic family of operators

(4.1) T β
λ ϕ(x) =

∫
eiλf(x,y)|g(x, y)|ε(1/2−β)|f ′′xy(x, y)|βχ(x, y)ϕ(y)dy.

We note that T 0
λ = Tλ and that if Re(β) = 1/2 then we have

Theorem 4.1 ([PSt4]).

||T β
λ ||L2→L2 = O(λ−1/2).

When Re(β) = −α/(1− 2α), T β
λ is a form of fractional integration and we want

to obtain estimate without any decay rate. To do this we shall use the following

lemma.

Lemma 4.2. If K(x, y) ≥ 0 be the kernel of an operator T and K(x, y) satisfies

the following,

∫
K(x, y)y−

1
p dy ≤ Cx−

1
p ,

∫
K(x, y)x−

1
q dx ≤ Cy−

1
q ,

where 1/p+ 1/q = 1, then

Tϕ(x) =
∫
K(x, y)ϕ(y)dy
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is bounded in Lp.

Proof of Lemma 4.2. For ϕ ∈ Lp and ψ ∈ Lq ( 1
p + 1

q = 1) with ||ϕ||p = ||ψ||q = 1,

we have

|ϕ(y)ψ(x)| = |ϕ(y)x−
1

pq y
1

pqψ(x)y−
1

pq x
1

pq |

≤ 1
p
|ϕ(y)|px−

1
q y

1
q +

1
q
|ψ(x)|qy−

1
px

1
p .

Therefore, we have∣∣∣∣∫ ∫
K(x, y)ϕ(y)ψ(x)dydx

∣∣∣∣
≤

∫ ∫
K(x, y)

1
p
|ϕ(y)|px−

1
q y

1
q dydx+

∫ ∫
K(x, y)

1
q
|ψ(x)|qy−

1
px

1
p dydx

≤ C/p+ C/q.

This completes the proof. �

Now we shall prove the following lemma.

Lemma 4.3. If (1/p, α) ∈ int(A), then T
−α/(1−2α)
λ is bounded on L

p(1−2α)
1−pα with

the operator norm O(1).

Proof of Lemma 4.3. Since the oscillation does not play any role, it suffices to ob-

tain L
p(1−2α)
1−pα boundedness of the operator

Dϕ(x) =
∫
|g(x, y)|

ε
2(1−2α) |f ′′xy(x, y)|

−α
1−2αχ(x, y)ϕ(y)dy.

Let

K(x, y) = |g(x, y)|
ε

2(1−2α) |f ′′xy(x, y)|
−α

1−2α .

By lemma 4.2, it suffices to show that

(4.2)
∫

I

K(x, y)
1

y
1−pα

p(1−2α)

dy ≤ C

x
1−pα

p(1−2α)
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and

(4.3)
∫

I

K(x, y)
1

x
p−1−pα
p(1−2α)

dx ≤ C

y
p−1−pα
p(1−2α)

,

where I = [−|I|, |I|] with a sufficiently small |I|. Since the argument to prove (4.3)

is pararell to the argument for (4.2), we shall only show (4.2). The proof can be

divided into finite steps and we shall here show the first two steps. To complete

the proof we can repeat the same argument.

Step I Considering each quadrant separately, we may assume that x > 0, y > 0

and I = [0, |I|]. After reindexing if necessary, we may assume without loss of

generality that we can find cl > 0, dl > 0, and Cl > 0 such that cl < dl < Cl,

|rl(x)| = dlx
al + o(xal), and |sl(x)| = dlx

al + o(xal). We split I into several

subintervals: 0 ≤ y ≤ cnx
an , clxal ≤ y ≤ Clx

al , Cl+1x
al+1 ≤ y ≤ clx

al , and

C1x
a1 ≤ y ≤ |I| and separately treat the each case.

Case 1. 0 ≤ y ≤ cnx
an

If 0 ≤ y ≤ cnx
an , then

g(x, y) ∼ xCnyDn , and f ′′xy(x, y) ∼ xAnyBn .

Since

(4.4) α <
εDn + 2

2(Bn + 1)
− 1
Bn + 1

1
p
,

εDn − 2αBn

2(1− 2α)
− 1− pα

p(1− 2α)
> −1.

Consequently,

∫ cnxan

0

K(x, y)
1

y
1−pα

p(1−2α)

dy ∼
∫ cnxan

0

x
εCn−2αAn

2(1−2α) y
εDn−2αBn

2(1−2α)
1

y
1−pα

p(1−2α)

dy

≤ x
1

1−2α [
ε(Cn+αDn)

2 −αAn−αanBn− an
p −αan]+an .
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The desired estimate is followed by

1
1− 2α

[
ε(Cn + αDn)

2
− αAn − αanBn −

an

p
− αan] + an +

1− pα

p(1− 2α)

=
1

1− 2α

[
ε(Cn + anDn) + 2an

2
+

1− an

p
− α(1 + an +An + anBn)

]
≥ 0.

Case 2. Clx
al ≤ y ≤ cl+1x

al+1

If Clx
al ≤ y ≤ cl+1x

al+1 ,

g(x, y) ∼ xClyDl , and f ′′xy(x, y) ∼ xAlyBl .

Therefore

∫ clx
al

Cl+1xal+1
K(x, y)

1

y
1−pα

p(1−2α)

dy

∼
∫ clx

al

Cl+1xal+1
x

εCl
2(1−2α)−

Alα

1−2α y
εDl

2(1−2α)−
Blα

1−2α−
1−pα

p(1−2α) dy

≤ x
εCl

2(1−2α)−
Alα

1−2αx
εalDl

2(1−2α)−
alBlα

1−2α −
(1−pα)al
p(1−2α) +al

+ x
εCl

2(1−2α)−
Alα

1−2αx
εal+1Dl
2(1−2α)−

al+1Blα

1−2α −
(1−pα)al+1

p(1−2α) +al+1

≤ x
εCl

2(1−2α)−
Alα

1−2αx
εalDl

2(1−2α)−
alBlα

1−2α −
(1−pα)al
p(1−2α) +al

+ x
εCl+1

2(1−2α)−
Al+1α

1−2α x
εal+1Dl+1

2(1−2α) −
al+1Bl+1α

1−2α −
(1−pα)al+1

p(1−2α) +al+1

where we use the following for the last inequality

(4.5) Cl + al+1Dl = Cl+1 + al+1Dl+1 and Al + al+1Bl = Al+1 + al+1Bl+1.

Case 3. C1x
a1 ≤ y ≤ |I|

If C1x
a1 ≤ y ≤ |I|,

g(x, y) ∼ xC0yD0 , and f ′′xy(x, y) ∼ xA0yB0 .
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By using (4.5) again, we obtain

∫ |I|

C1xa1

K(x, y)
1

y
1−pα

p(1−2α)

dy ∼ x
εC0

2(1−2α)−
αA0
1−2α

∫ |I|

C1xa1

y
εD0

2(1−2α)−
αB0
1−2α dy

≤ x
εC0

2(1−2α)−
αA0
1−2α (1 + x

εD0a1
2(1−2α)−

αB0a1
1−2α +a1)

≤ x
εC0

2(1−2α)−
αA0
1−2α + x

ε(C0+a1D0)
2(1−2α) −α(A0+a1B0)

1−2α +a1

= x
εC0

2(1−2α)−
αA0
1−2α + x

ε(C1+a1D2)
2(1−2α) −α(A1+a1B1)

1−2α +a1 .

Since

α ≤ εC0

2(1 +A0)
+

1
1 +A0

1
p

and

α ≤ ε(C1 + a1D1) + a1

2(1 + a1 +A1 + a1B1)
+

1− a1

1 + a1 +A1 + a1B1

1
p
,

∫ |I|

C1xa1

K(x, y)
1

y
1−pα

p(1−2α)

dy ≤ x−
1−pα

p(1−2α) ,

which finishes the treatment of Case 3.

Case 4. clxal ≤ y ≤ Clx
al

If clxal ≤ y ≤ Clx
al ,

g(x, y) ∼ xCl−1yDl

∏
clx

al≤|si(x)|≤Clx
al

|y − si(x)|,

f ′′xy(x, y) ∼ xAl−1yBl

∏
clx

al≤|ri(x)|≤Clx
al

|y − ri(x)|.

To treat this case we need finer decomposition of the domain of integration so we

start the second step.

Step II To do this we introduce the following notation:

Sα
l = {ri(x)|ri(x) = cαl x

al + o(xal)}.
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We assumed that for all rj(x) and sj(x) satisfying

clx
al < |rj(x)|, |sj(x)| < Clx

al ,

|rj(x)| and |sj(x)| have the same leading term dlx
al , that is,

|rj(x)| = dlx
al + o(xal) and |sj(x)| = dlx

al + o(xal).

If we set rj(x) = cαl x
al + o(xal), we have three possible cases: (i) Im(cαl ) 6= 0, (ii)

cαl < 0, and (iii) cαl > 0. In (i) and (ii), we have

|y − rj(x)| ∼ xal

if y is in the range {clxal < y < Clx
al}. Hence we may assume that cαl = dl > 0.

Now we define a coordinate transformation η1 so that

η1(x, y) = (x, y + cαl x
al).

If we rewrite the integral in terms of y1, we have

∫ Clx
al

clx
al

K(x, y)
1

y
1−pα

p(1−2α)

dy ≤ x−
(1−pα)al
p(1−2α)

∫ Cxal

−Cxal

K(x, y1 + cαl x
al)dy1

= x−
(1−pα)al
p(1−2α)

∫ 0

−Cxal

K(x, y1 + cαl x
al)dy1

+ x−
(1−pα)al
p(1−2α)

∫ Cxal

0

K(x, y1 + cαl x
al)dy1

= Il,− + Il,+.

Since the treatment of Il,+ is similar to that of Il,−, we only treat Il,+. To do this

we may assume that we can find cl,l′ , dl,l′ , and Cl,l′ such that 0 < cl,l′ < dl,l′ < Cl,l′ ,

|rl(x)− cαl x
al | = dl,l′x

al′ (η1) + o(xal′ (η1)),
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and

|sl(x)− cαl x
al | = dl,l′x

al′ (η1) + o(xal′ (η1)).

We decompose the region {(x, y) : 0 ≤ y ≤ Cxal} into several subregions: 0 ≤

y ≤ cl,n1x
an1 (η1), Cl,1x

a1(η1) ≤ y ≤ Cxal , Cl,l′+1x
al′+1(η1) ≤ y ≤ cl,l′x

al′ (η1), and

cl,l′x
al′ (η1) ≤ y ≤ Cl,l′x

al′ (η1).

Case 1. 0 ≤ y ≤ cl,n1x
an1 (η1)

In this case we have

∫ cl,n1xan1 (η1)

0

K(x, y + cαl x
al)dy1

∼
∫ cl,n1xan1 (η1)

0

x
ε

2(1−2α) (Cn1 (η1)+an1 (η1)Dn1 (η1))x
−α

1−2α (An1 (η1)+an1 (η1)Bn1 (η1))dy1

= xan1 (η1)x
ε

2(1−2α) (Cn1 (η1)+an1 (η1)Dn1 (η1))x
−α

1−2α (An1 (η1)+an1 (η1)Bn1 (η1)).

To show the desired inequality we have to show

− (1− pα)al

p(1− 2α)
+ an1(η1) +

ε

2(1− 2α)
(Cn1(η1) + an1(η1)Dn1(η1))

− α

1− 2α
(An1(η1) + an1(η1)Bn1(η1)) +

1− pα

p(1− 2α)
≥ 0.

To show this we factor out 1
1−2α and simplify the left-hand side to get

(4.6)
1

1− 2α

(
(1− al)

1
p

+
ε

2
(Cn1(η1) + an1(η1)Dn1(η1) + 2an1(η1))− αC ′

)

where C ′ = An1(η1) + an1(η1)Bn1(η1) + 2an1(η1) − al. Now it is easy to see that

(4.6) is nonnegative because of the assumption that (1/p, α) ∈ A.
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Case 2. Cl,l′+1x
al′+1(η1) ≤ y ≤ cl,l′x

al′ (η1)

∫ cl,l′x
a

l′ (η1)

Cl,l′+1x
a

l′+1(η1)
K(x, y1 + cαl x

al)dy1

∼
∫ cl,l′x

a
l′ (η1)

Cl,l′+1x
a

l′+1(η1)
x

εC
l′ (η1)

2(1−2α)−
A

l′ (η1)α

1−2α y
εD

l′ (η1)
2(1−2α) −

B
l′ (η1)α

1−2α dy1

≤ xal′ (η1)x
ε

2(1−2α) (Cl′ (η1)+al′ (η1)Dl′ (η1))x
−α

1−2α (Al′ (η1)+al′ (η1)Bl′ (η1))

+ xal′+1(η1)x
ε

2(1−2α) (Cl′ (η1)+al′+1(η1)Dl′ (η1))x
−α

1−2α (Al′ (η1)+al′+1(η1)Bl′ (η1))

≤ xal′ (η1)x
ε

2(1−2α) (Cl′ (η1)+al′ (η1)Dl′ (η1))x
−α

1−2α (Al′ (η1)+al′ (η1)Bl′ (η1))

+ xal′+1(η1)x
ε

2(1−2α) (Cl′+1(η1)+al′+1(η1)Dl′+1(η1))x
−α

1−2α (Al′+1(η1)+al′+1(η1)Bl′+1(η1))

where we use the following identities for the last inequality

Al′(η1) + al′+1(η1)Bl′(η1) = Al′+1(η1) + al′+1(η1)Bl′+1(η1)

Cl′(η1) + al′+1(η1)Dl′(η1) = Cl′+1(η1) + al′+1(η1)Dl′+1(η1).

Case 3. Cl,1x
a1(η1) ≤ y ≤ Cxal

∫ Cxal

Cl,1xa1(η1)
K(x, y1 + cαl x

al)dy1

≤ x
εCl

2(1−2α)−
Alα

1−2αx
εalDl

2(1−2α)−
alBlα

1−2α +al

+ xa1(η1)x
ε

2(1−2α) (C1(η1)+a1(η1)D1(η1))x
−α

1−2α (A1(η1)+a1(η1)B1(η1))

Case 4. cl,l′xal′ (η1) ≤ y ≤ Cl,l′x
al′ (η1)

It remains to show

x−
(1−pα)al
p(1−2α)

∫ Cl,l′x
a

l′ (η1)

cl,l′x
a

l′ (η1)
K(x, y1 + cαl x

al)dy1 ≤ Cx
−(1−pα)
p(1−2α) .
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To treat this case we start the third step which has the same argument with the

second step. We repeat the same argument until we completely resolve the roots

of f ′′xy and g, that is, until there is only one root in the range of the integral. If we

have only one root r(x) in the range of the integral and if the root is a real root,

we have to integrate |y − r(x)|−(2αBn(η)(η)−εDn(η)(η))/2(1−2α) with respect to y near

r(x), where η is a coordinate change defined by η(x, y) = (x, y − r(x)) and n(η)

is the largest index of al′(η). The convergence of the integration is guarranteed

because by using (1.1) we have

(4.7) α <
εDn(η)(η)) + 2
2(Bn(η)(η) + 2)

and (4.7) implies

2αBn(η)(η)− εDn(η)(η)
2(1− 2α)

< 1.

We can easily see that we have the desired estimates for all integrals which will

occur in each step. �

To finish the proof of Theorem 1.4 we interpolate Lemma 4.3 with Theorem

4.1. �

Remark 4.4. 1. In the proof of Theorem 1.4, we use the strict inequalities at

two places (4.4) and (4.7). When we prove (4.3), we have to use one more strict

inequality

(4.8) α <
εC0

2(1 +A0)
+

1
1 +A0

1
p
.

Therefore, Theorem 1.3. can be extended to the boundary of A when (1/p, α) is

not on any of a line which bounds the region in (4.4), (4.7) or (4.8). It would be

interesting to obtain Lp decay estimates when (1/p, α) is on one of these lines.
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2. Let δ1 and δ2 be the weighted Newton distance and the optimal decay rate,

respectively. We give an example showing that in general the optimal decay rate for

L2 operator norm of Tλ can be smaller than the weighted Newton distance which

has been introduced in [Pr]. We take f and g such that

f ′′xy(x, y) = (y − xN )R1(y − xN − xkN )M1

g(x, y) = (y − xN − x2N )R2 .

Without any change of variable, we have

a1 = N, A1 = N(R1 +M1), B1 = 0, C1 = NR2, and D1 = 0.

One can check that

δ1 =
1 +N + εNR2

1 +N +N(R1 +M1)
.

By using the change of variables η : (x, y) 7→ (x, y − xN ), we have

a2(η) = kN, A2 = kNM1, B2 = R, C2 = 2NR2, and D2 = 0.

We then have

δ2 =
1 + 2kN −N + ε(2NR2)

1 + 2kN −N + kN(M1 +R1)
.

Given N there exists k such that

δ2 ∼
2N

2N +N(M1 +R1)
=

2
2 +M1 +R1

.

For large N , we have

δ1 ∼
1 + εR2

1 +R1 +M1
.

Now choosing ε and R2 so that εR2 > 1, we get δ2 < δ1.
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3. Theorem 1.3 may be expressed in one of the following two equivalent forms.

Fix λ ≥ λ0 for some λ0, sufficiently large. A set of the form

B = {(x, y) ∈ suppχ | a ≤ x ≤ b, c ≤ y ≤ d}

is defined to be a “testing box” if there exist functions F1, F2 : R → R depending

on B satisfying

sup
(x,y)∈B

|λ(f(x, y)− F1(x)− F2(y))| <
π

4
.

Let F denote the class of all testing boxes.

Statement 1. For large values of λ,

||Tλ||L2→L2 ∼ max
{

sup
B∈F

|B| 12 inf
(x,y)∈B

|g(x, y)|ε/2, λ−1/2

}
.

It suffices to consider a subfamily of F. Let us make the following definition:

Definition 4.5. A vector (a, b, c, d) with b ≥ a ≥ 1, c, d > 0 is called an admissi-

ble tuple if there exists a Puiseux series q with leading exponent a and constants

ki, ri,mi, i = 1, 2 such that for all λ sufficiently large

(1)

B = {(x, y);λ−1/c + r1λ
− b−a+1

c ≤ x ≤ λ−1/c + r2λ
− b−a+1

c ,

q(λ−1/c) +m1λ
−b/c ≤ q(λ−1/c) +m2λ

−b/c}

is a “testing box”, and

(2)

k1λ
−d/c ≤ sup

(x,y)∈B

|g(x, y)| ≤ k2λ
−d/c.

Let N denote the collection of all admissible tuples.
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Statement 2. For large values of λ,

||Tλ||L2→L2 ∼ λ−δ/2

where

δ = min
{

min
(a,b,c,d)∈N

1 + 2b− a+ εd

c
, 1

}
.
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