
Decay Estimates for Weighted Oscillatory
Integrals in R2

MALABIKA PRAMANIK & CHAN WOO YANG

ABSTRACT. In this paper, we study decay estimates for a two-di-
mensional scalar oscillatory integral with degenerate real-analytic
phase and amplitude. Integrals such as these form a model for
certain higher-dimensional degenerate oscillatory integrals, for
which it is known that many of the two-dimensional results fail.
We define an analogue of the Newton distance in the weighted
case, and prove that this gives the optimal rate of decay for the
weighted oscillatory integral under certain generic hypotheses.
When these hypotheses fail, we provide counterexamples to show
that the optimal rate of decay may be faster in general. We have
obtained bounds for the rate of decay in some of these exceptional
cases.

1. INTRODUCTION

In this paper, we consider weighted scalar oscillatory integrals in two variables of
the form

(1.1) I(λ,ϕ) :=
∫

R2
eiλf(x,y)|g(x,y)|εϕ(x,y)dy dx,

where

• f and g are real-analytic, real-valued functions in a neighborhood of the origin
in R2, f(0,0) = g(0,0) = 0, ∇f(0,0) = (0,0),

• ε is a fixed positive number,
• λ is a real parameter, and
• ϕ ∈ C∞0 (R

2).

It is a well-known fact (see [9], [8] or Section 4 of this paper) that if the support
of ϕ is concentrated in a sufficiently small neighborhood of the origin, then the
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oscillatory integral (1.1) has an asymptotic expansion of the following form as
λ→∞:

(1.2) I(λ,ϕ) ≈
∑

p

∑

n=0,1

ap,n(ϕ)λ
p(lnλ)n.

Here p runs through finitely many arithmetic progressions (independent on ϕ)
whose elements are of the form −(r + r̃ ε), where r and r̃ are non-negative ratio-
nals.

Let us recall the definition of the oscillation index of a scalar oscillatory inte-
gral adapted to the weighted situation.

Definition. The oscillation index β(g, f , ε) of the 3-tuple (g, f , ε) at the
origin is the maximum of the numbers p having the following property: For any
neighborhood V of the origin in R2, there exists ϕ ∈ C∞0 (R

2) with support in V
such that in the asymptotic expansion for I(λ,ϕ) given by (1.2), ap,n(ϕ) 6= 0 for
some n = 0, 1.

The aim of this paper is to compute, to the extent possible, the oscillation
index of a two-dimensional weighted oscillatory integral in terms of the Newton
diagrams of the amplitude and the phase. The unweighted case (i.e., when g ≡ 1)
has been considered by Varchenko in [15], where it has been proved that the prin-
cipal term in the asymptotic expansion is given by the reciprocal of the distance
between the origin and the Newton polyhedron of f . However, a counterex-
ample presented in the same paper refutes the hypothesis that the same quantity
continues to provide the oscillation index β(1, f , ε) in higher dimensions. The
two-dimensional weighted oscillatory integral may be thought of as a model of
certain higher-dimensional unweighted oscillatory integrals with special symme-
tries in the phase (see for instance the introduction of [10]). A case in point is the
important counterexample to Arnold’s problem given by Varchenko in the context
of oscillatory integrals in R3 (see Section 5, [15]). In our situation, Varchenko’s
example translates to

(1.3)
∫∫∫

B3⊂R3
exp{iλ[(µx2

1 + x
4
1 + x

2
2 + x

2
3)

2 + x
4p
1 + (x2

2 + x
2
3)

2p]}

dx1 dx2 dx3,

where µ is a real parameter and p is a sufficiently large natural number. Now, a few
trivial size estimates coupled with a cylindrical change of co-ordinates transforms
the above three-dimensional unweighted integral to a two-dimensional weighted
one, given by

(1.4)
∫∫

B2⊂R2
exp{iλ[(y2 + x4 + µx2)2 + x4p +y4p]}|y|dy dx.

Clearly, the integral in (1.3) has similar decay properties as the integral in (1.4).
In general, the hope is that results for integrals of the form (1.1) would shed
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some light on the behavior of the higher-dimensional unweighted ones they arise
from. One therefore expects some of the difficult features of higher dimensions
to be reflected in these lower dimensional integrals. It should be mentioned that
a special case of the weighted problem arises in the work of Fedoryuk [4], where
f is taken to be positive away from the origin and the coordinate axes, and g is a
monomial.

In this paper, we make use of Varchenko’s technique to obtain an algorithm
for computing the oscillation index of the weighted oscillatory integral. In generic
situations to be elucidated later, the oscillation index turns out to be the same as
the weighted Newton distance. The weighted Newton distance, whose definition
is reviewed in Section 1, provides a natural generalization of the notion of distance
between the Newton polyhedron and the origin, as originally used by Varchenko.
In certain non-generic cases the oscillation index may be strictly larger than the
weighted Newton distance, as shown in the example presented in Section 6. This
is a significant departure from the unweighted situation in dimension 2. In these
cases, the computation of the oscillation index becomes more example-specific,
but a refinement of Varchenko’s method yields upper and lower bounds of the
index even in these cases.

We would like to mention in this context that a problem somewhat related to
the one in [15] has been treated by Phong and Stein [12, 13], where the authors
obtain the optimal decay rate in L2 of the unweighted oscillatory integral opera-
tor in R with real-analytic phase. However, the point of emphasis in [12, 13] is
somewhat different from [15]. Varchenko’s proof for the scalar oscillatory integral
is based on successive blow-ups of the phase which reduce the integral to some
simple canonical models which can then be treated directly. However, the blow-
up processes that he uses are highly non-constructive. On the other hand, the
fundamental tool in the method of Phong and Stein is a hands-on decomposition
of the complement of the singular variety of a real-analytic function (in their case
the Hessian of the phase). A salient feature of our proof is that it combines some
of the constructive aspects of Phong and Stein’s decomposition technique with the
resolution of singularities approach of Varchenko. Such concrete constructions
of resolution of singularities have also come up in the recent work of Greenblatt
[5, 6], and Rolin, Speissegger and Wilkie [14].

2. DEFINITIONS, NOTATION AND PRELIMINARY OBSERVATIONS

In view of the work of Varchenko [15], it is not entirely surprising that the asymp-
totic behavior of the scalar oscillatory integral (1.1) bears a close connection to the
blow-up properties of integrals of the form

(2.1)
∫

S

|g(x,y)|ε

|f(x,y)|δ
dy dx,
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where S is a semi-algebraic set. Finiteness and stability properties of such integrals
have been studied in [10, 11] and we shall need many of the ideas from these
papers in our analysis.

We begin with a brief review of some of the definitions from [10]. Let
f(x,y) =

∑
m,n≥0 am,nx

myn in a neighborhood of the origin.

Definition. Newton’s polyhedron of f is defined to be the convex hull of the
set

⋃

m,n≥0
am,n 6=0

{(x,y) | x ≥m, y ≥ n}.

The union of all compact faces of Newton’s polyhedron is called Newton’s diagram
and is denoted by Γ(f ).

While the present definition of a Newton diagram is useful from the point
of view of computability, there is an alternative description (due to Phong and
Stein [12]) which is more useful for analytical purposes and we set up the no-
tation required for this here. By the Weierstrass Preparation Theorem, f and g
may be expressed, after a nonsingular change of coordinates, as polynomials in y
with coefficients in x, modulo some nonvanishing factors. Factoring out these
nonvanishing terms we write f and g as

f(x,y) = xα̃1y β̃1
∏

ν|ν∈Ξf

(y − rν(x)),(2.2a)

g(x,y) = xα̃2y β̃2
∏

µ|µ∈Ξg
(y − sµ(x)),(2.2b)

where α̃1, α̃2, β̃1, and β̃2 are non-negative integers and rν(x), sµ(x) are the
non-trivial zeros of f and g respectively. Ξf and Ξg are index sets that are in one-
to-one correspondence with the nontrivial roots of f and g respectively, counted
according to multiplicity. In a small neighborhood of the origin these roots admit
convergent fractional power series expansions in x, the so-called Puiseux series

rν(x) = cνx
aν +O(xbν ), sµ (x) = cµx

aµ +O(xbµ ).

Here the exponents aν , aµ, bν , bµ are rational numbers and the leading coeffi-
cients cν , cµ are nonzero scalars (possibly complex valued). We order the com-
bined set of distinct leading exponents aν , aµ-s into a single increasing sequence
a`, as follows,

0 < a1 < a2 < · · · < a` < a`+1 < · · · < aN .
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The generalized multiplicity of f (respectively g) corresponding to a`, denoted by
m` (respectively n`), is defined as follows

m` := #{ν | rν(x) = cνx
a` + · · · , for some cν 6= 0},

n` := #{µ | sµ(x) = cµx
a` + · · · , for some cµ 6= 0}.

If a` does not occur as a leading exponent of any root of f (respectively g), we set
m` = 0 (respectively n` = 0).

The following quantities arise naturally in the description of the Newton dia-
grams of f and g:

A` = α̃1 + a1m1 + a2m2 + · · · + a`m`, B` = β̃1 +m`+1 + · · · +mN ,

C` = α̃2 + a1n1 + a2n2 + · · · + a`n`, D` = β̃2 +n`+1 + · · · +nN ,

and

(2.3) δ` =
1+ a`

A` + a`B`
, δ̃` =

1+ a`
C` + a`D`

.

In fact, it can be shown that (for a proof see Observation 1 in Section 5(b) of
[12]) the Newton diagram of f (respectively g) has vertices at the points (A`, B`)
(respectively (C`,D`)). It follows that the leading exponents a` of the roots of f
(or g) can be read off from its Newton diagram, together with their generalized
multiplicities m` (or n`). More precisely, the boundary segment in the Newton
diagram of f (respectively g) joining the vertices (A`−1, B`−1) and (A`, B`) (re-
spectively (C`−1,D`−1) and (C`,D`)) has slope −1/a` and vertical height m`.

Furthermore, δ−1
` (respectively δ̃−1

` ) is the coordinate of the point of intersection
of the above-mentioned boundary line with the bisectrix y = x.

It is a point worth noting that if f is subjected to an analytic change of co-
ordinates, then all of the above quantities, namely a`, m`, A`, B` will possibly
change. Here a change of coordinates means a mapping (x,y) → (x′, y ′) that
is analytic with analytic inverse and a nonvanishing Jacobian. However, the con-
cept of a Newton distance continues to make sense in this new set of coordinates,
even though it is not invariant under the change. More generally, suppose η is a
coordinate change of the form (x,y)→ (x′, y ′), with

(2.4)

{
x′ = x

y ′ = y − q(x)
or

{
x′ = x − q(y)

y ′ = y,

where q is a convergent real-valued Puiseux series of a single variable in a neighbor-
hood of the origin. Then f and g still have Puiseux factorization representations
of the form (2.2). The notions of leading exponent and generalized multiplicity
are therefore meaningful and give rise to a convex diagram with vertices (A`, B`),
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via the aforementioned formulas. We will call this diagram the generalized New-
ton diagram of f in the coordinates η. Coordinate systems η of the form (2.4) are
called “good”. We denote by C the class of all good coordinate systems. For η ∈ C,
we write a`(η), m`(η), A`(η), B`(η), δ`(η) etc. to accentuate the coordinate-
dependence of the relevant quantities. The weighted Newton distance of f and g
associated to η is defined as follows:

δw0 (g, f , ε;η) := min
`

[
δ`(η)

(
1+

ε

δ̃`(η)

)]
,

where the index ` runs through the combined set of leading exponents of Puiseux
series of the roots of f and g expressed in the coordinate system η. The weighted
Newton distance plays an important role in the finiteness of the integral in (2.1).
In fact, it has been shown in [10] that the integral in (2.1) is finite for S = B(0; r)
with sufficiently small r > 0 if and only if

(2.5) δ < δ0(g, f , ε) := inf
η∈C

δw0 (g, f , ε;η).

Furthermore, the infimum over C can be replaced by the minimum over a finite
subclass C0(g, f ), whose elements can be specified explicitly in terms of the zero
variety of f and g. More specifically, C0(g, f ) contains coordinate changes of
the form (x,y) , (x′, y ′), where either {y ′ = y − r(x), x′ = x} or {x′ =
x−r(y), y ′ = y}. Here r is either a real root of fg, or the real part of a complex
root of fg. A coordinate system η in C0(g, f ) is called admissible. For details
on the description of C0(g, f ) and situations where it arises, see [10]. It is also
worth noting that the weighted Newton distance δw0 (g, f , ε;η) or δ0(g, f , ε) are
not “real” distances, in the sense that there is no geometrical significance attached
to these notions, unlike the standard Newton distance.

Throughout the paper, we use the notation A ≈ B to mean that B is the
asymptotic expansion of A, and A ∼ B to mean that there exists a constant C
(possibly depending on f , g and ε) such that C−1B ≤ A ≤ CB. We are now ready
to state and prove our first theorem.

3. STATEMENT OF THEOREM 3.1

Theorem 3.1.

(a) If δ0(g, f , ε) as defined in (2.5) is not an odd integer, then the oscillation index
β(g, f , ε) (defined on page 612 ) is given by

β(g, f , ε) = −δ0(g, f , ε).

(b) If δ0(g, f , ε) is an odd integer and f does not change sign in a neighborhood of
the origin, then the conclusion of part (a) holds.
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(c) Suppose δ0(g, f , ε) is an odd integer, which is also a double pole (i.e., a pole of
order 2) of the integral

(3.1)
∫

B(0;r)

|g(x,y)|ε

|f(x,y)|δ
dy dx.

Here r > 0 is sufficiently small and the integral above is interpreted as a mero-
morphic function of δ. Then the conclusion of part (a) holds.

In terms of the Newton diagram, (the meromorphic continuation with respect
to δ of) the function given by (3.1) has a double pole at δ = δ0(g, f , ε) if and
only if there exists a real root of f , say y − r(x) or x − r(y), and an index `
such that

(3.2) δ0(g, f , ε) =
1+ εD`(η)
B`(η)

=
1+ εC`(η)
A`(η)

,

where η ∈ C0(g, f ) is given by

η : (x,y), (x′, y ′), where

{
x′ = x

y ′ = y − r(x)
or

{
x′ = x − r(y)

y ′ = y.

An equivalent formulation of (3.2) is the following:

(3.3) δ0(g, f , ε) = δ`(η)

(
1+

ε

δ̃`(η)

)
= δ`+1(η)

(
1+

ε

δ̃`+1(η)

)
.

Remarks.

(a) Note that the conditions (3.2) and (3.3) have a special geometric significance
in the unweighted case, where they are equivalent to the bisectrix intersecting
the Newton polygon of f at a vertex. These cases are remarkable in that they
provide a necessary condition for the oscillatory integral to have an optimal
decay rate of the form λ−β(g,f ,ε)(lnλ).

(b) In Theorem 7.1, Section 7, we formulate a partial result concerning those
cases not covered in Theorem 3.1.

4. THE CONNECTION BETWEEN I AND I±

Following the analysis of Varchenko, we exploit the connection of the oscillatory
integral I(λ,ϕ) with the two auxiliary integrals I+(τ,ϕ) and I−(τ,ϕ) involving
the generalized functions f τ± :

I+(τ,ϕ) =

∫

R2
(f+(x,y))

τ |g(x,y)|εϕ(x,y)dy dx,(4.1)

I−(τ,ϕ) =

∫

R2
(f−(x,y))

τ |g(x,y)|εϕ(x,y)dy dx.(4.2)
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Here f+ and f− are given by

f+(x) =

{
f(x) if f(x) ≥ 0

0 if f(x) < 0,
f−(x) =

{
0 iff(x) ≥ 0

−f(x) iff(x) < 0.

When Re(τ) > 0, τ ∈ C, I+ and I− are analytic functions of the parameter τ. It
follows from the theorem of Bernstein-Gelfand [3] and of Atiyah [2] that for ϕ
supported in a sufficiently small neighborhood of zero, it is possible to continue
I+ and I− on C as meromorphic functions of the parameter τ. Moreover, the poles
of I+ and I− belong to finitely many arithmetic progressions that do not depend
on ϕ and whose elements are numbers of the form −(r + r̃ ε), where r and r̃
are non-negative rationals. Given the meromorphic continuation of I±(τ,ϕ),
the proof of the asymptotics of I(λ,ϕ) is obtained via the following argument.
The connection between these objects is an well-established fact (present in the
work of Malgrange [9], Atiyah [2], Gelfand and Shilov [7], Arnold, Gusein-Zadé
and Varchenko[1] and Jeanquartier [8]), but we include a proof for the sake of
completeness.

Lemma 4.1. Let the function I±(τ,ϕ) have poles at the points −τ1, −τ2, . . . ,
−τk, (τ1 < τ2 < · · · < τk < · · · ) and suppose that in a neighborhood of τ = −τk,
I±(τ,ϕ) admits the representation

I±(τ,ϕ) =
2∑

`=1

a±k,`
(τ + τk)`

+ Ĩ±(τ,ϕ),

where |a±k,1|
2+|a±k,2|

2 6= 0 and Ĩ±(τ,ϕ) is holomorphic. Then we have the following
asymptotic expansion for I(λ,ϕ):

(4.3) I(λ,ϕ) ≈
∞∑

k=1

2∑

q=1

(−1)q

(q − 1)!


a+k,q

(
d(q−1)

ds(q−1)
(Γ(s)(−iλ)−s)

)

s=τk

+ a−k,q

(
d(q−1)

ds(q−1)
(Γ(s)(iλ)−s)

)

s=τk




for λ→ ∞.

Remark. It will be clear from the proof that it is not possible for I±(τ,ϕ)
to have a pole of order larger than 2. One sees by integrating by parts that
the meromorphic continuation of an integral of the form F(τ1, τ2, . . . , τn) =∫
Rn

∏n
i=1 x

τi
i ϕ(x1, x2, . . . , xn)dx1 . . . dxn can have poles of order no more than

n.

Proof of Lemma 4.1. Let us write

I(λ,ϕ) = J+(λ,ϕ)+ J−(λ,ϕ),
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where

(4.4) J±(λ,ϕ) =

∫

±f>0
eiλf(x,y)|g(x,y)|εϕ(x,y)dy dx.

By simultaneously “resolving the singularities” of f and g, we first reduce the
assertion of Lemma 4.1 to a corresponding statement when

(4.5) f(x,y) = xk1yk2 and g(x,y) = xm1ym2 .

The statement of the resolution of singularities (adapted to R2) goes as follows:
Let f , g : R2 → R be analytic functions at the origin, f(0,0) = g(0,0) = 0,
∇f(0,0) = ∇g(0,0) = (0,0). Then there exist a nonsingular real-analytic two-
dimensional manifold Y , and a proper analytic mapping π : Y → R2 such that at
each point of the set S = π−1(0,0) there exist local coordinates (x,y) satisfying
the following properties:

1. There exist non-negative integers k1, k2,m1,m2 and smooth functions f̃ and

g̃ with f̃ (0,0), g̃(0,0) 6= 0 such that

f(π(x,y)) = xk1yk2 f̃ (x,y) and g(π(x,y)) = xm1ym2 g̃(x,y).

2. The Jacobian of the mapping π has the form

Jπ(x,y) = x
`1y`2 J̄π(x,y),

where `1, `2 are non-negative integers and Jπ(0,0) 6= 0.
3. In a neighborhood of the origin in R2, π is an analytic isomorphism outside a

proper analytic subset in R2.

Let us choose a smooth finite partition of unity ψα such that for any α, there
exists an open set containing the support of ψα on which conditions 1 and 2
above are satisfied. For Re(τ) > 0 we have

I±(τ,ϕ) =

∫

R2
f τ± |g|

εϕdxdy =

∫

Y
(f ◦π)τ±(ϕ ◦π)|g ◦π|

ε |Jπ |dudv

=
∑

α

∫

Y
(f ◦π)τ±(ϕ̃ ◦π)|g ◦π|

εψα|Jπ |dudv,

where ϕ̃ = ϕf̃ g̃, dudv is a volume element in Y , and Jπ is the Jacobian of the
transition from dxdy to dudv. By virtue of conditions 1 and 2 above, the last
expression is a sum of terms of the form

∫
(un1vn2)τ±|u|

m1ε+`1 |v|m2ε+`2(ϕ̃ ◦π)ψα|J̄π |dudv.
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The above integral is again a finite sum of integrals of the type

(4.6) ±

∫

±u>0
±v>0

|u|τn1+m1ε+`1 |v|τn2+m2ε+`2(ϕ̃ ◦π)ψα|J̄π |dudv.

For any N ≥ 1 and τ > −maxi=1,2(miε+ `i+N)/ni, we may formally integrate
by parts N times to reduce the integral above to one that is absolutely convergent.
Thus, each term in the sum I±(τ,ϕ) can be analytically continued on C as a
meromorphic function with poles belonging to the arithmetic progressions

−
(miε + `i + k)

ni
, k ≥ 0, k ∈ Z, i = 1,2.

It is therefore sufficient to restrict attention to functions f and g of the special
form (4.5) and integrals I± of the form (4.6). Once we have evaluated the mero-
morphic function in (4.6) at a given τ > −maxi=1,2(miε + `i +N)/ni in terms
of a convergent integral using integration by parts, another integration by parts on
the integral thus obtained gives a size estimate for this function at the same point.
In fact, for any ε0 > 0, M ≥ 1 and any τ in the given range such that the distance
of the poles of I± from τ is bounded below by ε0 there exists CM,N,ε0 > 0 such
that

(4.7) |I±(τ,ϕ)| ≤ CM,N,ε0(1+ |τ|)
−M .

The proof of Lemma 4.1 is based on the following identities:

∫∞

0
J+(iµ,ϕ)µ

s−1 dµ = Γ(s)I+(−s,ϕ),(4.8)

and

J+(λ,ϕ) =
1

2πi

∫

γ
Γ(s)(−iλ)−sI+(−s,ϕ)ds,(4.9)

where Im(λ) > 0 and γ is the contour c + iR, for some small positive number c
to be specified. We briefly sketch the proofs of these identities. The equation (4.8)
follows by plugging in the expression for J+ from (4.4) into the left hand side and
interchanging the order of integration. In order to see (4.9), we again plug in the
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defining formula for I+ from (4.1):

1
2πi

∫

γ
Γ(s)(−iλ)−sI+(−s,ϕ)ds

=
1

2πi

∫

γ
Γ(s)(−iλ)−s

[∫

R2
(f+(x,y))

−s|g(x,y)|εϕ(x,y)dy dx

]
ds

=

∫

R2

[
1

2πi

∫

γ
Γ(s)(−iλ)−s(f+(x,y))−s ds

]
|g(x,y)|εϕ(x,y)dy dx

=

∫

R2

[ ∞∑

n=0

(−1)n

n!
(−iλf+(x,y))

n
]
|g(x,y)|εϕ(x,y)dy dx

=

∫

R2
eiλf+(x,y)|g(x,y)|εϕ(x,y)dy dx = J+(λ,ϕ).

In the penultimate step of the above computation we have used Cauchy’s theorem
to evaluate the integral, replacing the domain of integration γ by a closed contour
of the form

[c − iN, c + iN]∪ [c + iN,−N + iN]

∪ [−N + iN,−N − iN]∪ [−N − iN, c − iN],

and letting N →∞. The details of the contour integration are left to the interested
reader.

Now let us fix a λ > 0, λ� 1. For N ≥ 1, we write

J+(λ,ϕ) =
1

2πi

∫ c+N+i∞

c+N−i∞
Γ(s)(−iλ)−sI+(−s,ϕ)ds

+ lim
R→∞

1
2πi

∫

γ̃N,R
Γ(s)(−iλ)−sI+(−s,ϕ)ds,

where γ̃N,R is the rectangle in the positive half-plane given by

γ̃N,R = γ̃
0
N,R + γ̃

1
N,R + γ̃

2
N,R + γ̃

3
N,R,

oriented in the clockwise direction with

γ̃0
N,R = [c − iR, c + iR],

γ̃1
N,R = [c + iR,N + iR],

γ̃2
N,R = [N + iR,N − iR], and

γ̃3
N,R = [N − iR, c − iR].

We can choose N so that N ∉ N and τk ≠ N for any k. For each such N ≥ 1,
there exists kN such that τk ∈ int(γN) if and only if 1 ≤ k ≤ kN . Observe that by
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Cauchy’s theorem,

1
2πi

∫

γ̃N,R
I+(−s,ϕ)Γ(s)(−iλ)−s ds

=

kN∑

k=1

2∑

q=1

(−1)q−1

(q − 1)!
a+k,q

(
dq−1

dsq−1
(Γ(s)(−i)−s)

)

s=τk

,

In order to complete the proof we shall show that

(i)

lim
R→∞

1
2πi

∫

γ̃1
N,R∪γ̃

3
N,R

Γ(s)(−iλ)−sI+(−s,ϕ)ds = 0,

and
(ii)

∣∣∣∣
∫ c+N+i∞

c+N−i∞
Γ(s)(−iλ)−sI+(−s,ϕ)ds

∣∣∣∣ ≤ CNλ−N as λ→∞.

To see (i), we make use of Stirling’s formula and observe that on γ̃1
N,R,

|Γ(s)(−iλ)−s| ≤ C|(σ + iR)σ+iR−1/2e−σ−iR(−iλ)−σ−iR|

≤ C(σ 2 + R2)(σ−1/2)/2e−R arg(σ+iR)e−σλ−σe−(π/2)R,

where s = σ + iR, 0 < c ≤ σ ≤ N. Since

0 < arg(σ + iR) <
π

2
,

using (4.7) with M = 0 gives for R ≥ N

∣∣∣∣
1

2πi

∫

γ̃1
N,R

Γ(s)(−iλ)−sI+(−s,ϕ)ds
∣∣∣∣ ≤ CNRNe−(π/2)R,

which approaches zero as R tends to infinity. On γ̃3
N,R, we make use of the func-

tional identity of the gamma function

Γ(x + 1) = xΓ(x), x 6= 0,−1,−2, . . .

to obtain

|Γ(s)(−iλ)−s|
= |(s − 1)(s − 2) · · · (s −N)Γ(s −N)(−iλ)−s|

≤ C(R +N)N |(σ −N − iR)σ−N−iR−1/2e−σ+N+iR(−iλ)−σ+N+iR|

≤ CRN((σ −N)2 + R2)(σ−N−1/2)/2eR arg(σ−N−iR)e−σ+Nλ−σe(π/2)R,
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where s = σ − iR, 0 < c ≤ σ ≤ N. Now observe that

arg(σ −N − iR) < −
π

2
,

which implies that

|e−σλ−σeR(π/2+arg(σ−N−iR))| ≤ 1.

Furthermore,
((σ −N)2 + R2)(σ−N−1/2)/2 ≤ R−1/4 ≤ 1,

so that by invoking (4.7) with M = N + 1 we get

∣∣∣∣
1

2πi

∫

γ̃3
N,R

Γ(s)(−iλ)−sI+(−s,ϕ)ds
∣∣∣∣ ≤ CNR−1,

which again approaches zero as R tends to infinity.
The proof of (ii) is very similar. For s = N + it, t > 0, we have by Stirling’s

formula

|Γ(N + it)(−iλ)−N−it| ≤ Cλ−N(N2 + t2)(N−1/2)/2e−t arg(N+it)e−(π/2)t.

Using the estimate (4.7) with M = 0 we get

∣∣∣∣
∫ c+N+i∞

c+N+i0
Γ(s)(−iλ)−sI+(−s,ϕ)ds

∣∣∣∣ ≤ CNλ−N .

On the other hand, for s = N − it, t > 0, the functional identity for the gamma
function followed by Stirling’s formula yields

|Γ(s)(−iλ)−s| ≤ |(N − it)(N − 1− it) . . . (c − it)Γ(c − it)(−iλ)−N+it|

≤ Cλ−N(N + t)N(c2 + t2)(c−1/2)/2et arg(c−it)e(π/2)t,

where c = sup{N − k < 0 | k ∈ N}. Note that −1 < 0 < c. This implies that

arg(c − it) < −
π

2
,

so that by invoking (4.7) with M = 2N, one obtains

∣∣∣∣∣

∫ c+N+i0

c+N−i∞
Γ(s)(−iλ)−sI+(−s,ϕ)ds

∣∣∣∣∣ ≤ CNλ
−N

∫∞

0
(1+ |t|)−N dt ≤ CNλ

−N .
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This completes the proof of (ii). In fact, the same proof can be modified to prove
the following stronger statement:

∣∣∣∣
(
dr

dλr

)[
J+(λ,ϕ)−

kN∑

k=1

2∑

q=1

(−1)q−1

(q − 1)!
a+k,q

(
dq−1

dsq−1
(Γ(s)(−iλ)−s)

)

s=τk

]∣∣∣∣

≤ CN,rλ
−N−r , as λ→∞.

Summarizing, we arrive at the following asymptotic expansion of J+(λ,ϕ),

J+(λ,ϕ) ≈
∞∑

k=1

2∑

q=1

(−1)q−1

(q − 1)!
a+k,q

(
dq−1

dsq−1
(Γ(s)(−iλ)−s)

)

s=τk

.

Similarly one obtains the asymptotic expansion of J−(λ,ϕ):

J−(λ,ϕ) ≈
∞∑

k=1

2∑

q=1

(−1)q−1

(q − 1)!
a−k,q

(
dq−1

dsq−1
(Γ(s)(iλ)−s)

)

s=τk

.

Combining the two yields the conclusion of Lemma 4.1. ❐

5. PROOF OF THEOREM 3.1

(a). Let us choose ϕ ≥ 0, ϕ ≡ 1 in a neighborhood of the origin. Then by
the finiteness result in [10], τ = −δ0(g, f , ε) is the first pole of

∫
|g(x,y)|ε |f(x,y)|τϕ(x,y)dy dx = I+(τ,ϕ)+ I−(τ,ϕ).

Since both I+ and I− are non-negative functions for τ > −δ0(g, f , ε), there exists
an index q1 such that

(5.1) a+1,q1
≥ 0, a−1,q1

≥ 0, a+1,q1
+ a−1,q1

> 0.

The principal term in the asymptotic expansion of I(λ,ϕ) will be

(lnλ)q1−1

λδ0

1
(q1 − 1)!

[
Γ(δ0)e

(πi/2)δ0a+1,q1
+ Γ(δ0)e

(−πi/2)δ0a−1,q1

]

=
(lnλ)q1−1

λδ0

Γ(δ0)

(q1 − 1)!

×

[
(a+1,q1

+ a−1,q1
) cos

(
πδ0

2

)
+ i(a+1,q1

− a−1,q1
) sin

(
πδ0

2

)]
,

where we have written δ0 to mean δ0(g, f , ε). By virtue of (5.1) and the fact that
δ0 is not an odd integer, the above expression does not vanish.
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(b). Next suppose that f does not change sign in a neighborhood of the ori-
gin, say f is non-negative. Then I−(τ,ϕ) ≡ 0, which means that a−1,q1

= 0. The
principal term in the asymptotic expansion of I(λ,ϕ) is therefore

λ−δ0(lnλ)q1−1

(q1 − 1)!
Γ(δ0)e

(πi/2)δ0a+1,q1
6= 0.

(c). Suppose now that δ0 is an odd integer and a double pole of the integral
in (2.1). Since q1 = 2, there are at most two terms in the asymptotic expansion of
I(λ,ϕ) of the form λ−δ0(lnλ)k, namely k = 0, 1. These are given by

−

[
a+1,2

( Γ ′ (δ0)

(−iλ)δ0
−
Γ(δ0) ln(−iλ)
(−iλ)δ0

)
+ a−1,2

(Γ ′(δ0)

(iλ)δ0
−
Γ(δ0) ln(iλ)
(−iλ)δ0

)]

+

[
a+1,1

Γ(δ0)

(−iλ)δ0
+ a−1,1

Γ(δ0)

(iλ)δ0

]

= Γ(δ0)λ
−δ0 lnλ

[
a+1,2e

(πi/2)δ0 + a−1,2e
−(πi/2)δ0

]

+ i
π

2
λ−δ0

[
− a+1,2e

(πi/2)δ0 + a−1,2e
−(πi/2)δ0

]

− Γ ′(δ0)λ
−δ0

[
a+1,2e

(πi/2)δ0 + a−1,2e
−(πi/2)δ0

]

+ Γ(δ0)λ
−δ0
[
a+1,1e

(πi/2)/δ0 + a−1,1e
−(πi/2)δ0

]

= Γ(δ0)
lnλ
λδ0

[
(a+1,2 + a

−
1,2) cos

(
πδ0

2

)
+ i(a+1,2 − a

−
1,2) sin

(
πδ0

2

)]

+ i
π

2
Γ(δ0)

λδ0

[
(a−1,2 − a

+
1,2) cos

(
πδ0

2

)
− i(a+1,2 + a

−
1,2) sin

(
πδ0

2

)]

−
Γ ′(δ0)

λδ0

[
(a+1,2 + a

−
1,2) cos

(
πδ0

2

)
+ i(a+1,2 − a

−
1,2) sin

(
πδ0

2

)]

+
Γ(δ0)

λδ0

[
(a+1,1 + a

−
1,1) cos

(
πδ0

2

)
+ i(a+1,1 − a

−
1,1) sin

(
πδ0

2

)]
.

We claim that the oscillation index is δ0, i.e., the above expression can never be
zero. When a+1,2 6= a

−
1,2, the growth rate is λ−δ0 lnλ. When a+1,2 = a

−
1,2 (in which

case the coefficient of λ−δ0 lnλ vanishes), the above expression has a non-zero real
part by virtue of (5.1), namely

(−1)(δ0−1)/2π

2
Γ(δ0)(a

+
1,2 + a

−
1,2)λ

−δ0 .

Thus the oscillation index is δ0 even in this case. The proof of Theorem 3.1
will therefore be complete if we obtain the characterizations (3.2) and (3.3) of the
existence of a double pole at δ0 in terms of the Newton diagram. For this we set up
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the following notation for a constructive algorithm for resolution of singularities
that will also be useful for a more detailed analysis of I+ and I−.

To begin with, let us recall the Puiseux factorization of f given by (2.2) and
observe that f can change sign only across a real root. In fact, f changes sign
across a real root if and only if the multiplicity of the root is odd. Without loss of

generality and for simplicity of exposition let us assume α̃i = β̃i = 0, i = 1, 2. We
fix a small neighborhood V of the origin and order the distinct elements of the set

{Re(rν) | ν ∈ Ξf } ∪ {Re(sµ) | µ ∈ Ξg},

on V ∩ {x > 0}, as follows:

−1 < q1(x) < q2(x) < · · · < qR(x) < 1.

Here for every i, 1 ≤ i ≤ R, qi is either a real root of f or g, or the real part of
a complex root of f or g. We will denote q0 ≡ −1 and qR+1 ≡ 1. The roots in
V ∩ {x < 0} can be treated similarly. For 0 ≤ i ≤ R, let

Ri := {(x,y) ∈ V | qi(x) < y < qi+1(x), x > 0},

I+ := {i | f(x,y) > 0 for (x,y) ∈ Ri},

I− := {i | f(x,y) < 0 for (x,y) ∈ Ri}.

For i ∈ I+, we define

Ii+(τ,ϕ) :=
∫

Ri

|f(x,y)|τ |g(x,y)|εϕ(x,y)dy dx.

Similarly for i ∈ I−, we define Ii+(τ,ϕ). Then,

I+(τ,ϕ) =
∑

i∈I+

Ii+(τ,ϕ), I−(τ,ϕ) =
∑

i∈I−

Ii−(τ,ϕ).

Let us consider Ii±(τ,ϕ) for some i ∈ I+. Using the change of variable

(x,y) , (x,u),

where

u =
y − qi(x)

qi+1(x)− qi(x)
,

we obtain

Ii±(τ,ϕ) =

∫

0<x<r
0<u<1

[|f |τ |g|εϕ](x,qi(x)+u(qi+1(x)− qi(x)))

× (qi+1(x)− qi(x))dudx.

The change of variable y , u allows us to express f in the following way:
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f(x,y) =
∏

ν∈Ξf

[u(qi+1(x)− qi(x))− (rν(x)− qi(x))].

We recall that rν -s are the roots of f , and we have made use of the factorization
of f given in (2.2). (Without loss of generality we have set α̃i = β̃i = 0 for i = 1,
2.) Suppose now that qi+1(x) − qi(x) has leading exponent a. Then the index
set Ξf may be decomposed into two parts,

Ξ0
f (i, a) := {ν ∈ Ξf | rν − qi has leading exponent strictly smaller than a},

Ξ1
f (i, a) := {ν ∈ Ξf | rν − qi has leading exponent at least a}.

Therefore,

|f(x,y)|

=

∣∣∣∣
∏

ν∈Ξ0

f
(i,a)

[(
1−u

qi+1(x)− qi(x)

rν(x)− qi(x)

)
(rν(x)− qi(x))

]∣∣∣∣

×

∣∣∣∣
∏

ν∈Ξ1
f
(i,a)

[(
u−

rν(x)− qi(x)

qi+1(x)− qi(x)

)
(qi+1(x)− qi(x))

]∣∣∣∣

= uMi(1−u)Mi+1

∣∣∣∣
∏

ν∈Ξ0

f
(i,a)

(rν(x)− qi(x))
∏

ν∈Ξ1
f
(i,a)

(qi+1(x)− qi(x))

∣∣∣∣

×

∣∣∣∣
∏

ν∈Ξ0

f
(i,a)

(
1−u

qi+1(x)− qi(x)

rν(x)− qi(x)

) ∏

ν∈Ξ1
f
(i,a)

rν 6=qi,qi+1

(
u−

rν(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣,

where we have written Mi to denote the multiplicity of the root qi in f . More
precisely, Mi is the positive integer such that

f(x,y) = (y − qi(x))
Mi f̃ (x,y),

where f̃ (x, qi(x)) 6≡ 0. Let the multiplicity of qi in g be denoted by Ni. We
observe that by our choice of the qi-s, Mi + Ni > 0 for all i, 1 ≤ i ≤ R. An
expression similar to the one above then holds for g with rν replaced by sµ and
Mi replaced by Ni. Feeding this back into Ii±(τ,ϕ) we get:
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Ii±(τ,ϕ)

=

∫

0<x<r
0<u<1

uMiτ+Niε(1−u)Mi+1τ+Ni+1ε(qi+1(x)− qi(x))

×
∣∣∣

∏

ν∈Ξ0

f
(i,a)

(rν(x)− qi(x))
∏

ν∈Ξ1
f
(i,a)

(qi+1(x)− qi(x))
∣∣∣
τ

×
∣∣∣

∏

µ∈Ξ0
g(i,a)

(sµ(x)− qi(x))
∏

µ∈Ξ1
g(i,a)

(qi+1(x)− qi(x))
∣∣∣
ε

×

∣∣∣∣
∏

ν∈Ξ0

f
(i,a)

(
1−u

qi+1(x)− qi(x)

rν(x)− qi(x)

) ∏

ν∈Ξ1
f
(i,a)

rν 6=qi,qi+1

(
u−

rν(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣
τ

×

∣∣∣∣
∏

µ∈Ξ0
g(i,a)

(
1−u

qi+1(x)− qi(x)

sµ(x)− qi(x)

) ∏

µ∈Ξ1
g(i,a)

sµ 6=qi,qi+1

(
u−

sµ(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣
ε

× ϕ(x,qi(x)+u(qi+1(x)− qi(x)))dudx.

Let ηi ∈ C0(g, f ) denote the coordinate transformation given by:

(x,y) , (x,y − qi(x)).

Recalling the definition of a`(ηi) introduced in Section 2, note that there exists
` such that

a`(ηi) = a.

Using the definitions of Ξ0
f (i, a) and Ξ1

f (i, a), we observe that

∣∣∣
∏

ν∈Ξ0

f
(i,a)

(rν(x)− qi(x))
∏

ν∈Ξ1
f
(i,a)

(qi+1(x)− qi(x))
∣∣∣ ∼ xA`(ηi)+a`(ηi)B`(ηi),

from which one obtains

(qi+1(x)− qi(x))×
∣∣∣

∏

ν∈Ξ0

f
(i,a)

(rν(x)− qi(x))
∏

ν∈Ξ1
f
(i,a)

(qi+1(x)− qi(x))
∣∣∣
τ

×
∣∣∣

∏

µ∈Ξ0
g(i,a)

(sµ(x)− qi(x))
∏

µ∈Ξ1
g(i,a)

(qi+1(x)− qi(x))
∣∣∣
ε

∼ x[A`(ηi)+a`(ηi)B`(ηi)]τ+[C`(ηi)+a`(ηi)D`(ηi)]ε+a`(ηi).

The meromorphic nature of the integral Ii±(τ,ϕ) will be specified by the singu-
larities of the integrand on the domain on integration. In our case, these are at
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u = 0, u = 1 and x = 0. In order to obtain the location of the poles and the coef-
ficients of the singular terms, we recall a theorem of Gelfand and Shilov [7], which
states that if θ is a smooth cut-off on R supported in [−1,1] and non-vanishing
at the origin, then the first pole of the integral

∫ 1

0
xτθ(x)dx

occurs at τ = −1, the order of the pole is simple and the residue is θ(0). A natural
generalization of the above theorem to higher dimensions is the following lemma
(see for instance [15])

Lemma 5.1. Letψ(y1, y2, . . . , yk, µ) be a compactly supported infinitely differ-
entiable function in the variablesy1, y2, . . . , yk that is meromorphic in the parameter
µ ∈ C`. Then the function

U(τ1, τ2, . . . , τk, µ) =

∫

y1,...,yk>0

( k∏

i=1

y
τi
i

)
ψ(y1, y2, . . . , yk, µ)dy1 dy2 · · · dyk

can be meromorphically continued for all values of τ1, τ2, . . . , τk and its poles are
either those already possessed by the function ψ or they can lie only on hyperplanes of
the form τi + s = 0, where s ∈ N.

In our case the above result yields the following conclusion which we state in
the form of a lemma.

Lemma 5.2. If δ0(g, f , ε) is a double pole of Ii±(τ,ϕ), then there exists ` such
that

δ0(g, f , ε) = δ`(ηi)

(
1+

ε

δ̃`(ηi)

)
= δ`+1(ηi)

(
1+

ε

δ̃`+1(ηi)

)
.

Proof. We first observe that we cannot directly apply the theorem of Gelfand
and Shilov to the integral Ii±(τ,ϕ). This is because if we write Ii±(τ,ϕ) in the
form

Ii±(τ,ϕ) =

∫

0<x<r
0<u<1

uMiτ+Niε(1−u)Mi+1τ+Ni+1εx(A`+a`B`)τ+(C`+a`D`)ε+a`

× θ(x,u)dudx,

where a`, A` etc. are computed in the coordinates ηi, then the cutoff function θ
involves factors of the form

∣∣∣∣
∏

ν∈Ξ1
f
(i,a)

rν 6=qi,qi+1

(
u−

rν(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣
τ

(5.2)
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and

x = 0
∣∣∣∣

∏

µ∈Ξ1
g(i,a)

sµ 6=qi,qi+1

(
u−

sµ(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣
ε

,(5.3)

which are not always smooth. We explore the nature of these factors in some
detail. Since there is no root of f or g whose real part lies in between qi and qi+1,
none of the terms

(5.4) u− Re

(
rν(x)− qi(x)

qi+1(x)− qi(x)

)
or u− Re

(
sµ(x)− qi(x)

qi+1(x)− qi(x)

)

vanish on the domain of integration {(x,u) | 0 < x < r, 0 < u < 1} except
possibly at (u,x) = (0,0) or (u,x) = (1,0). The following cases may arise.

(1). For some ν ∈ Ξ1
f (i, a) or µ ∈ Ξ1

g(i, a), rν , sµ 6= qi, qi+1, the root

(5.5)
rν(x)− qi(x)

qi+1(x)− qi(x)
or

sµ(x)− qi(x)

qi+1(x)− qi(x)

is real-valued, with leading exponent 0. This occurs if rν − qi (or sµ − qi) has
leading exponent a. In this case, the leading coefficient must be either < 0 or ≥ 1.

(a) If the leading coefficient is 6= 1, the expressions (5.2) and (5.3) can be made
nonvanishing on the domain of integration by choosing r sufficiently small,
and hence smooth for all values of ε and/or τ. The corresponding factor can
then be absorbed into the cutoff ϕ.

(b) If the leading coefficient is equal to 1, then the corresponding root in (5.5) is
given by the Puiseux expansion 1+cxb+ higher order terms, where b > 0 and
c > 0. Thus for r sufficiently small, the only point in {0 < x < r,0 < u < 1}
where the corresponding term given in (5.4) can vanish is (u,x) = (1,0). In
this case, the factor in (5.2) blows up at (u,x) = (1,0) for negative τ. The
factor in (5.3) is also non-smooth in general at the specified point, unless
(sµ − qi)/(qi+1 − qi) is analytic and ε is an even integer.

(2). Suppose next that the root in (5.5) is real-valued with leading exponent
> 0. Then the leading coefficient must be < 0, from which we conclude that the
only point where (5.4) vanishes is u = 0, x = 0. By the same reasoning as above,
the corresponding factors (5.2) and (5.3) are non-smooth in general in these cases.
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(3). The treatment of the case when the roots in (5.2) and (5.3) are complex-
valued is essentially a repetition of the real-valued case. We write

(5.6)

∣∣∣∣∣u−
rν(x)− qi(x)

qi+1(x)− qi(x)

∣∣∣∣∣ ∼
∣∣∣∣∣u−Re

(
rν(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣∣

+

∣∣∣∣∣Im

(
rν(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣∣ ,

and consider the following subcases.

(a) First let us suppose that the Puiseux series of Re[(rν−qi)/(qi+1−qi)] has the
same leading exponent as (rν−qi)/(qi+1−qi). If this leading exponent is> 0,
then the imaginary part of the expression in (5.6) also had leading exponent
> 0 and vanishes if and only if x = 0. Consequently the real part vanishes
only when u = 0. This gives rise to the same problems with smoothness as
discussed earlier. If the leading exponent is 0, then the leading coefficient of
the Puiseux series of Re(rν − qi)/(qi+1 − qi) is either < 0 or ≥ 1. If the
leading coefficient is 6= 1, the expression in (5.6) is nonvanishing, hence (5.2)
and (5.3) are smooth. If the leading coefficient is 1, the second coefficient
must be positive as before, which means that (5.6) vanishes if and only if
(u,x) = (1,0).

(b) Next let the leading exponent of Re(rν − qi)/(qi+1 − qi) be larger than that
of (rν − qi)/(qi+1 − qi). If the leading exponent of (rν − qi)/(qi+1 − qi) is
0, the expression (5.6) is already nonvanishing by virtue of its imaginary part,
hence smooth. If the leading exponent is > 0, the imaginary part vanishes
when x = 0, and the real part when u = 0.

In the remainder of this section, we rewrite Ii±(τ,ϕ) as a sum of integrals, each
of which can be treated by the theorem of Gelfand and Shilov. To begin with, we
decompose the domain of integration in Ii±(τ,ϕ) as follows:

{(u,x) | 0 < u < 1, 0 < x < r} =
[(

0,
1
2

)
× (0, r )

]
∪

[(
1
2
,1
)
× (0, r )

]
,

and write Ii±(τ,ϕ) as a sum of two integrals, one over each domain:

Ii±(τ,ϕ) = I
i
±,0(τ,ϕ)+ I

i
±,1(τ,ϕ).

For Ii±,1(τ,ϕ), whose domain of integration is the region ( 1
2 ,1)×(0, r ), we make

the change of variable (x,u) , (x′, u′), where x′ = x, u′ = 1 − u, to get an

integral whose domain of integration is (0, 1
2)×(0, r ) and whose integrand has the

same form as that of Ii±,0(τ,ϕ). It is therefore sufficient to work with Ii±,0(τ,ϕ).
Let us denote by

b1 < b2 < · · · < bk < · · · < bK , K = Ki dependent on i,
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the distinct leading exponents of the following collection of Puiseux series:

{
rν(x)− qi(x)

qi+1(x)− qi(x)
| rν ∈ Ξ1

f (i, a), rν 6= qi, qi+1

}

∪

{
sµ(x)− qi(x)

qi+1(x)− qi(x)
| sµ ∈ Ξ1

g(i, a), sµ 6= qi, qi+1

}
.

Depending on the size of these factors, we decompose the integral Ii±,0(τ,ϕ) into

a sum of integrals: Ii±,0(τ,ϕ) =
∑K
k=0 I

i,k
±,0(τ,ϕ), where Ii,k±,0(τ,ϕ) is the integral

with integrand same as Ii±,0(τ,ϕ) but domain of integration equal to

{0 < x < r, 0 < u < xbK} if k = K,

{0 < x < r, xbk+1 < u < xbk} if 1 ≤ k ≤ K − 1,

{0 < x < r, xb1 < u < 1
2} if k = 0.

We will analyze each of these integrals separately.

Let us first consider Ii,k±,0(τ,ϕ) for 1 ≤ k ≤ K − 1. We make a change of vari-

able (x,u) , (x1, u1), where x1 = x, u1 = u/x
bk , which reduces the domain

of integration to {0 < x1 < r, x
bk+1−bk
1 < u1 < 1}. Rewriting Ii,k±,0(τ,ϕ) after

the change of variable, we obtain

I
i,k
±,0(τ,ϕ) =

∫
0<x<r

xbk+1−bk<u1<1

(u1x
bk)Miτ+Niε(qi+1(x)− qi(x))x

bk

×
∣∣∣

∏

ν∈Ξ0
f
(i,a)

(rν(x)− qi(x))
∏

ν∈Ξ1
f
(i,a)

(qi+1(x)− qi(x))
∣∣∣
τ

×
∣∣∣

∏

µ∈Ξ0
g(i,a)

(sµ(x)− qi(x))
∏

µ∈Ξ1
g(i,a)

(qi+1(x)− qi(x))
∣∣∣
ε

×

∣∣∣∣
∏

ν∈Ξ0
f
(i,a)

(
1−u1x

bk
qi+1(x)− qi(x)

rν(x)− qi(x)

) ∏

ν∈Ξ1
f
(i,a)

rν 6=qi,qi+1

(
u1x

bk−
rν(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣
τ

×

∣∣∣∣
∏

µ∈Ξ0
g(i,a)

(
1−u1x

bk
qi+1(x)− qi(x)

sµ(x)− qi(x)

) ∏

µ∈Ξ1
g(i,a)

sµ 6=qi,qi+1

(
u1x

bk −
sµ(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣
ε

× ϕ(x,qi(x)+u1x
bk(qi+1(x)− qi(x)))du1 dx =
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=

∫
0<x<r

xbk+1−bk<u1<1

u
Miτ+Niε
1 (qi+1(x)− qi(x))(x

bk)Miτ+Niε+1

×

∣∣∣∣
∏

ν∈Ξ0
f
(i,bk+a)

(rν(x)− qi(x))
∏

ν∈Ξ1
f
(i,bk+a)
rν 6=qi

xbk(qi+1(x)− qi(x))

∣∣∣∣
τ

× (qi+1(x)− qi(x))
Miτ

×

∣∣∣∣
∏

µ∈Ξ0
g(i,bk+a)

(sµ(x)− qi(x))
∏

µ∈Ξ1
g(i,bk+a)

sµ 6=qi

xbk(qi+1(x)− qi(x))

∣∣∣∣
ε

× (qi+1(x)− qi(x))
Niε

×

∣∣∣∣
∏

ν∈Ξ0
f
(i,bk+a)

(
1−u1x

bk
qi+1(x)− qi(x)

rν(x)− qi(x)

)

×
∏

ν∈Ξ1
f
(i,bk+a)

rν 6=qi

(
u1 − x

−bk
rν(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣
τ

×

∣∣∣∣
∏

µ∈Ξ0
g(i,bk+a)

(
1−u1x

bk
qi+1(x)− qi(x)

sµ(x)− qi(x)

)

×
∏

µ∈Ξ1
g(i,bk+a)

sµ 6=qi

(
u1 − x

−bk
sµ(x)− qi(x)

qi+1(x)− qi(x)

)∣∣∣∣
ε

× ϕ(x,qi(x)+u1x
bk(qi+1(x)− qi(x)))du1 dx.

We observe that there exists ν ∈ Ξ1
f (i, a), rν 6= qi, qi+1, such that the leading

exponent of rν −qi is bk+a. This is because if (rν −qi)/(qi+1−qi) has leading
exponent bk, then rν − qi must have leading exponent bk + a. Thus there exists
an indexm such that am(ηi) = bk + a. Note that

(qi+1(x)− qi(x))
Miτ+Niε+1(xbk)Miτ+Niε+1

×
∣∣∣

∏

ν∈Ξ0

f
(i,bk+a)

(rν(x)− qi(x))
∏

ν∈Ξ1
f
(i,bk+a)

rν 6=qi

xbk(qi+1(x)− qi(x))
∣∣∣
τ

×
∣∣∣

∏

µ∈Ξ0
g(i,bk+a)

(sµ(x)− qi(x))
∏

µ∈Ξ1
g(i,bk+a)

sµ 6=qi

xbk(qi+1(x)− qi(x))
∣∣∣
ε

∼ x(Am+amBm)τ+(Cm+amDm)ε+am ,
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where all the numbers am, Am, etc. have been computed based on the coordinates
ηi. We need one more change of variable to reduce the integral to standard form.
Let us consider the map (x,u1), (x1, u2), where

(5.7) x1 = xu
−1/(bk+1−bk)
1 , u2 = u1.

The domain of integration changes to

{
0 < u1 < 1, 0 < x1 < min(ru

−1/(bk+1−bk)
1 ,1)

}

=
{
0 < u1 < r

bk+1−bk , 0 < x1 < 1
}
∪
{
rbk+1−bk < u1 < 1, 0 < x1 < 1

}
.

We accordingly write Ii,k±,0(τ,ϕ) = I
i,k,1
±,0 (τ,ϕ)+I

i,k,2
±,0 (τ,ϕ), depending on whether

the integral is over the first or second domain given above. The integral Ii,k,2±,0 (τ,ϕ)
cannot have a double pole, since u1 is bounded away from 0 on its domain of in-

tegration. We therefore only concentrate on Ii,k,1± (τ,ϕ). For ν ∈ Ξ1
f (i, bk + a),

the change of variable (5.7) yields

u1 − x
−bk

rν(x)− qi(x)

qi+1(x)− qi(x)

= u1 − cνx
b`−bk − higher order terms

= u1 − cν
(
x1u

1/(bk+1−bk)
1

)b`−bk − higher order terms

= u1
[
1− cνx

b`−bk
1 u

(b`−bk)/(bk+1−bk)−1

1 − higher order terms
]
,

for some b` ≥ bk and cν 6= 0. First suppose that b` > bk. Then for 0 < u1 <

rbk+1−bk and r sufficiently small, the factor accompanying u1 is nonvanishing
on the domain of integration. This is immediate if b` > bk+1. If b` = bk+1, we
recall that cν < 0 and use the next term of the Puiseux series:

u1 − x
−bk

rν(x)− qi(x)

qi+1(x)− qi(x)

= u1 − cνx
bk+1−bk − dνx

b−bk − higher order terms

= u1
[
1− cνx

bk+1−bk
1 − dνx

b−bk
1 u

(b−bk)/(bk+1−bk)−1
1 − · · ·

]
,

for some b > bk+1. We note that

[
1− cνx

bk+1−bk
1 − dνx

b−bk
1 u

(b−bk)/(bk+1−bk)−1
1 − · · ·

]

≥ 1− 2|dν |r
(b−bk)/(bk+1−bk)−1 > 0.
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Thus the expression u1 − x
−bk(rν − qi)/(qi+1 − qi) essentially contributes a

single u1 for every ν with the property that rν − qi has leading exponent b` + a,
b` > bk. Next let us consider the case b` = bk. Since there is no root of f or g
whose real part lies between qi and qi+1, Re(cν) is either < 0 or ≥ 1. Since u1 ≤

rbk+1−bk and r may be chosen sufficiently small, the expression [u1 − cν − · · · ]
is nonvanishing. We therefore have

(5.8) I
i,k,1
±,0 (τ,ϕ) =

∫

0<x1<1, 0<u1<r
bk+1−bk

u
Bmτ+Dmε
1

×
(
x1u

1/(bk+1−bk)
1

)(Am+amBm)τ+(Cm+amDm)ε+am

× ϕ
(
x1u

1/(bk+1−bk)
1 , qi

(
x1u

1/(bk+1−bk)
1

)

+ u
bk+1/(bk+1−bk)
1 x

bk
1

(
qi+1

(
x1u

1/(bk+1−bk)
1

)
− qi

(
x1u

1/(bk+1−bk)
1

)))

× u
1/(bk+1−bk)
1 θi,k(x1, u1, τ, ε)du1 dx1,

where θi,k (depending on f and g but not onϕ) is a nonvanishing smooth func-
tion of x1 and u1 (in the domain of integration) for every τ and ε. The first pole
of this integral will be a double pole if and only if

(Am + amBm)τ + (Cm + amDm)ε + am = (Bmτ +Dmε)

+
1

bk+1 − bk
[(Am + amBm)τ + (Cm + amDm)ε + am + 1] = −1.

Keeping in mind the facts that

bk+1 − bk + am = bk+1 + a = am+1(ηi) and

Am + am+1Bm = Am+1 + am+1Bm+1,

we obtain the following necessary and sufficient condition for the integral to have
a double pole at −δ0(g, f , ε):

δ0(g, f , ε) =
am + 1+ ε(Cm + amDm)

Am + amBm

=
am+1 + 1+ (Cm+1 + am+1Dm+1)ε

Am+1 + am+1Bm+1
,

or in other words

δ0(g, f , ε) = δm

(
1+

ε

δ̃m

)
= δm+1

(
1+

ε

δ̃m+1

)
.
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The integrals Ii,k±,0(τ,ϕ) for k = K and k = 0 are simpler to handle. We

only need one change of variable (respectively {x = x1, u = u1x
bK
1 } and {x =

x1u
1/b1
1 , u = u1}) to reduce the integral to standard form. In particular, we

record for our later analysis that

(5.9) I
i,K
±,0(τ,ϕ) =

∫

0<x<r, 0<u1<1
u
Miτ+Niε
1 x(AM+aMBM )τ+(CM+aMDM )ε+aM

× θi,K(x,u, τ, ε)ϕ(x,qi(x)+u1x
bK(qi+1(x)− qi(x)))du1 dx,

whereM is such that aM(ηi) = bk+a. The details are left to the interested reader.
This completes the proof of Lemma 4 and also of Theorem 3.1. ❐

6. AN EXAMPLE

We recall that for a two-dimensional unweighted oscillatory integral with degener-
ate phase, δ0 is always < 1. Therefore part (a) of Theorem 3.1 completely specifies
the oscillation index of a two-dimensional unweighted oscillatory integral. How-
ever, it is not difficult to construct examples of weighted oscillatory integrals where
f changes sign, δ0(g, f , ε) is an odd integer and a simple pole of the integral in
(3.1)–a situation not covered by the statement of the theorem. The following
example shows that in general the oscillation index may be strictly larger than
δ0(g, f , ε) for such problems.

Let f(x,y) = xy , g(x,y) = y2, ε = 1. Then,

I+(τ,ϕ) =

∫

{x>0, y>0}∪{x<0,y<0}
|f(x,y)|τ |g(x,y)|εϕ(x,y)dy dx

=

∫

x>0, y>0
xτyτ+2(ϕ(x,y)+ϕ(−x,−y))dy dx,

and

I−(τ,ϕ) =

∫

x>0, y>0
xτyτ+2(ϕ(x,−y)+ϕ(−x,y))dy dx.

Note that τ1 = 1, and

a+1,1 = a
−
1,1 =

∫

y>0
y
(
ϕ(0, y)+ϕ(0,−y)

)
dy.

Observe that even though a+1,1 and a−1,1 are nonzero numbers for generic ϕ,

(a+1,1 + a
−
1,1) cos

(
−
π

2
τ1

)
+ i(a+1,1 − a

−
1,1) sin

(
−
π

2
τ1

)
= 0,



Decay Estimates for Weighted Oscillatory Integrals in R2 637

and hence the integral I(λ,ϕ) decays faster than λ−1 for any ϕ. We therefore
need to consider the next pole τ2 = 2. we write the analytic continuation of
I±(τ,ϕ) on τ > −2 using integration by parts:

I±(τ,ϕ) =

∫

x,y>0

xτ+1

τ + 1
yτ+2 d

dx
[ϕ(x,±y)+ϕ(−x,∓y)]dy dx.

It is now clear that the pole of these functions at τ = −τ2 = −2 is simple and the
residues are given by the following integrals:

a+2,1 =

∫

y>0
y−2+2 d

dx
[ϕ(x,y)+ϕ(−x,−y)]

∣∣∣∣
x=0
dy

=

∫

y>0
(ϕx(0, y)−ϕx(0,−y))dy, and

a−2,1 =

∫

y>0
y−2+2 d

dx
[ϕ(x,−y)+ϕ(−x,y)]

∣∣∣∣
x=0
dy

=

∫

y>0
(ϕx(0,−y)−ϕx(0, y))dy.

In this case, τ2 is an even integer and a+2,1 = −a
−
2,1, so the coefficient of λ−2 in the

asymptotic expansion of I (using Lemma 4.1) is

(a+2,1 + a
−
2,1) cos

(
π

2
τ2

)
+ i(a+2,1 − a

−
2,1) sin

(
π

2
τ2

)
= 0.

Thus λ−2 is not the optimal bound either. We therefore have to proceed to τ3 = 3.
Note that

I+(τ,ϕ) ≈ 2
∫

x>0, y>0
xτyτ+2

[
ϕ(0,0)+

x2

2!
ϕxx(0,0)+

y2

2!
ϕyy(0,0)

+
xy

2!
ϕxy(0,0)+ · · ·

]
dy dx

≈ 2
ϕ(0,0)

(τ + 1)(τ + 3)
+

2
2!
ϕxx(0,0)
(τ + 3)2

+ · · · ,

and

I−(τ,ϕ) ≈ 2
∫

x>0, y>0
xτyτ+2

[
ϕ(0,0)+

x2

2!
ϕxx(0,0)+

y2

2!
ϕyy(0,0)

−
xy

2!
ϕxy(0,0)+ · · ·

]
dy dx

≈ 2
ϕ(0,0)

(τ + 1)(τ + 3)
+

2
2!
ϕxx(0,0)
(τ + 3)2

+ · · · .
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Thus τ = −3 is a double pole of I+ and I−, and a+3,2 = a
−
3,2 = ϕxx(0,0) 6= 0 in

general. The calculations shown in the proof of Theorem 3.1(c) then yield

β(g, f ,1) = −3.

❐

7. STATEMENT AND PROOF OF THEOREM 7.1

In the remainder of the paper we will deal with weighted oscillatory integrals for
which the hypotheses of Theorem 3.1 fail and the oscillation index may potentially
be smaller than −δ0(g, f , ε). From the proof of Theorem 3.1, we have observed
that the poles of Ii±(τ,ϕ) are elements of finitely many arithmetic progressions.
Let P denote the set of all poles of I±:

P := {ρ | there exists ϕ such that I±(τ,ϕ) has a pole at τ = −ρ}.

Since it is difficult to keep track of the ordering of the elements in P, we make
a slight change of notation at this point. For ρ ∈ P, let a±(ρ, k,ϕ) denote the
coefficient of (τ + ρ)−k in the Laurent series expansion of I±(τ,ϕ) in a neigh-
borhood of τ = ρ, and let b(ρ, k,ϕ) be the coefficient of λ−ρ(lnλ)k−1 in the
asymptotic expansion of I(λ,ϕ).

Observe that, while the poles of I±(τ,ϕ) are contained in P for a givenϕ, not
all the elements of P make nontrivial contributions to the asymptotic expansion
of I(λ,ϕ). The reasons for this are several:

• Since the numbers a±(ρ, k,ϕ) depend heavily on ϕ, therefore for a specific
choice of ρ and ϕ, Ii±(τ,ϕ) may not have a pole at τ = −ρ for any i. This
of course trivially implies a±(ρ, k,ϕ) = 0. An example of this phenomenon
is most easily seen by taking ϕ to be sufficiently degenerate near the origin,
which has the effect that I±(τ,ϕ) does not have a pole at τ = −ρ unless ρ is
sufficiently large.

• Even if there exists an i such that Ii±(τ,ϕ) has a pole at τ = −ρ, the coefficients
of the singular parts of Ii±(τ,ϕ) at τ = −ρ, when summed over i, may cancel
out and give a+(ρ, k,ϕ) = a−(ρ, k,ϕ) = 0 for k = 1, 2. This would mean
that −ρ is not a pole of I±(τ,ϕ), which would translate to b(ρ, k,ϕ) = 0.
A simple example of this can be seen by redoing the example in the previous

section with f(x,y) = x2y , g(x,y) = xy2 and considering τ = − 3
2 .

• Even when I±(τ,ϕ) has a nontrivial singular part at τ = −ρ, the contribution
of this pole to the asymptotic expansion of I(λ,ϕ) may be zero because of
special properties like ρ ∈ N and a+(ρ, k,ϕ) = ±a−(ρ, k,ϕ), as we have seen
in the example.

Let us therefore describe the set of relevant ρ’s,

D :=
{
ρ ∈ P | there exists ϕ such that |b(ρ,1,ϕ)|2 + |b(ρ,2,ϕ)|2 6= 0

}
.
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The oscillation index is then given by β(g, f , ε) = −minD. For a pair (f , g)
whose Puiseux factorizations are known explicitly, one can compute using Lemma
4.1 the precise values of a±(ρ, k,ϕ) and b(ρ, k,ϕ) for a generic ϕ, and hence
obtain the oscillation index. However, for general f and g we cannot determine
using properties of the Newton diagram alone the value of ρ that will provide
the oscillation index. This requires a description of the set of elements ρ ∈ P

which do not contribute to I(λ,ϕ), and this in turn involves an understanding
of the cancellation properties mentioned earlier. It is not clear whether a charac-
terization of these cancellation properties can be obtained in terms of computable
quantities, as they sometimes involve coefficients of the Puiseux series of f and
g–information that is not encoded in the Newton diagrams. Our goal therefore
is to find a finite subset of −D which depends only on the Newton diagrams of f
and g in the admissible coordinates and whose maximum will then give a lower
bound, possibly nonoptimal, for the oscillation index.

We give below a list of sufficient conditions for ρ to be in D. Our result
involves a specific subset of P, namely

Pi :=
{
ρ =

1+ εNi
Mi

+
j

Mi
| j ≥ 0

}
.

Recall that i ranges over the set of all real roots of f , and thatMi andNi denote the
multiplicity of the i-th element of this collection as a root of f and g respectively.

Theorem 7.1. Let ρi be an element of Pi such that

ρi =





1+Niε
Mi

if Mi is even,

1+Niε
Mi

if Mi is odd and
1+Niε
Mi

is not an odd integer,

2+Niε
Mi

if Mi is odd, Mi ≥ 3, and
1+Niε
Mi

is an odd integer.

Suppose the set D0 of all ρi-s defined as above is non-empty. Then

−minD0 ≤ β(g, f , ε) ≤ −δ0(g, f , ε).

Remark. Note that in terms of the Newton diagram, we can read out the
numbers Mi and Ni if for some admissible transformation there exist horizontal
or vertical segments in the Newton diagrams of f and g whose heights from the
x-axis are Mi and Ni respectively.

Proof of Theorem 7.1. In parts (a), (b) and (c) below, we treat the three cases
mentioned in the statement of the theorem.
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(a). SupposeMi is even and ρ = (1+Niε)/Mi. It is conceivable that τ = −ρ

appears as a pole of Iα,k±,· (τ,ϕ) for many k-s and α-s. For the moment let us
assume that, for every α ∈ I+ ∪ I−, the order of multiplicity of τ = −ρ as a pole
of Iα±(τ,ϕ) is at most 1. Since Mi is even, f does not change sign across the root
qi. Suppose that f ≥ 0 on Ri−1 and Ri. Then both i− 1, i ∈ I+.

It is easy to identify some integrals Iα,k±,· (τ,ϕ) which have τ = −ρ as a pole.

Certainly Ii,K+,0(τ,ϕ) and Ii−1,K′

+,1 (τ,ϕ) satisfy this condition, where K′ is the value

of K for Ii−1
+,1 . The residue of Ii,K+,0(τ,ϕ) at τ = −ρ is given by

(7.1)
∫

0<x<r
x−(AM+aMBM )ρ+(CM+aMDM )ε+aMθi,K(x,0,−ρ, ε)

× ϕ(x,qi(x))dx.

One has a similar expression for the residue of Ii−1,K′

+,1 (τ,ϕ) at τ = −ρ:

(7.2)
∫

0<x<r
x−(AM′+aM′BM′ )ρ+(CM′+aM′DM′ )ε+aM′ θ̃i−1,K′(x,0,−ρ, ε)

× ϕ(x,qi(x))dx.

Suppose first that (i,K) and (i − 1, K′) are the only values of (α, k) that yield
a pole at τ = −ρ. Then by choosing ϕ such that ϕ(x,qi(x)) is nonnegative
and vanishes to a suitably high power of x at x = 0, we can ensure that the
integrals in (7.1) converge and are indeed strictly positive. Since we have assumed
that τ = −ρ does not appear as a pole of the meromorphic continuation of any

integral other than Ii,K+,0(τ,ϕ) and Ii−1,K′

+,1 (τ,ϕ), the above observation ensures
that a+(ρ,1) > 0, a−(ρ,1) = 0. This implies

(7.3) (a+(ρ,1)+a−(ρ,1)) cos
(
π

2
ρ

)
+ i(a+(ρ,1)−a−(ρ,1)) sin

(
π

2
ρ

)
6= 0,

and we are done. Suppose next that there exists k different from K, K′ such that

I
i,k
+,0(τ,ϕ) or Ii−1,k

+,1 (τ,ϕ) has τ = −ρ as a pole. From the expression (5.8) we
see that the residue for such an integral would be a multiple of ϕ(0,0). On the
other hand, if there exist α 6= i, i− 1 such that −ρ is a pole of Iα±(τ,ϕ), then the
corresponding residue would be of one of the following three forms:





∑

j=(j1,j2,j3)

cj(α)∂
j1

1 ∂
j2+j3

2 ϕ(0,0),

∑

j

∫

0<x<r
Φj,α(x, ρ, ε)[∂

j
2ϕ](x,qα(x))dx, or

∑

j

∫

0<x<r
Φ̃j,α(x, ρ, ε)[∂

j
2ϕ](x,qα+1(x))dx,
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where each of the sums is over a finite set of indices. Here cj(α)-s are scalars, Φj,α
and Φ̃j,α are functions, and ∂1 and ∂2 denote derivatives with respect to the first
and second argument respectively. The first case need not contribute to a±(ρ,1)

since we can find ϕ for which ∂
j1

1 ∂
j2+j3

2 ϕ(0,0) = 0 for all j, |j| ≤ M for some
sufficiently large M. For the second and third cases, since qα, qα+1 6= qi we
can ensure the existence of a ϕ which satisfies all our previous hypotheses and
moreover, a+(ρ,1) 6= 0, a−(ρ,1) 6= 0. This leads to (7.3).

Finally, suppose that there exists at least one i0 ∈ I+ ∪ I− such that τ = −ρ

is a double pole of Ii0± (τ,ϕ). Then the computation at the beginning of (c) in
Section 5 (proof of Theorem 3.1) shows that at least one of the coefficients of λ−ρ

or λ−ρ lnλ in the asymptotic expansion of I(λ,ϕ) is nonzero.

(b). If Mi is odd, let us assume without loss of generality that i− 1 ∈ I− and
i ∈ I+. Using the argument in (a), we will reduce to and only treat the case when

−ρ is a simple pole that occurs only in Ii,K+,0(τ,ϕ) and Ii−1,K′

−,1 (τ,ϕ). Recalling
the form of the residues given in (7.1) and (7.2), we can conclude by a genericity
argument similar to the one given in (a) that a+(ρ,1) > 0 and a−(ρ,1) > 0, and
hence a+(ρ,1)+ a−(ρ,1) > 0. This means that if ρ is not an odd integer, then

(a+(ρ,1)+ a−(ρ,1)) cos
(
π

2
ρ

)
6= 0,

and (7.3) holds.

(c). Next suppose ρ′ = (1 + εNi)/Mi is an odd integer. Since Mi ≥ 3,
ρ = ρ′ + 1/Mi is not an integer. Furthermore, if we choose ϕ so that

ϕ(x,qi(x)) ≡ 0, ∂2ϕ(x,qi(x)) 6≡ 0,

then the residues of Ii,K+,0(τ,ϕ) and Ii−1,K′

−,1 (τ,ϕ) at τ = −ρ are given by

a+(ρ,1) =
∫ r

0
x−(AM+aMBM )ρ+(CM+aMDM )ε+aM+bK

× (qi+1(x)− qi(x))θi,K(x,0,−ρ, ε)[∂2ϕ](x,qi(x))dx,

and

a−(ρ,1) = −
∫ r

0
x−(AM′+aM′BM′ )ρ+(CM′+aM′DM′ )ε+aM′+bK′

× (qi(x)− qi−1(x))θ̃i−1,K′(x,0,−ρ, ε)[∂2ϕ](x,qi(x))dx

respectively. Note that, by the choice of a suitable ϕ, the two residues can be
made nonzero but of opposite signs. We therefore conclude again from genericity
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considerations that a+(ρ,1)− a−(ρ,1) > 0. This implies that

(a+(ρ,1)− a−(ρ,1)) sin
(
π

2
ρ

)
6= 0,

which leads to (7.3). ❐
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[1] V.I. ARNOLD, S.M. GUSEIN-ZADÉ, and A.N. VARCHENKO, Singularities of Differentiable

Maps. Monodromy and Asymptotics of Integrals, Volume 2, Monographs in Mathematics, vol. 83,
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