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Abstract

Let f and g be real-analytic functions near the origin in R2. Given
1 < p < ∞, we obtain a characterization of the set of positive numbers
ε and δ that ensures

|g|ε

|f |δ
∈ Ap(K)

for some small neighborhood K of the origin. A notion of stability
is introduced in relation to Ap weights and a counterexample is pre-
sented to show that the two-dimensional weighted problem, unlike its
analogue in dimension one, is not stable.

This paper contains the second in a list of results on weighted integrals in
R2 and is a follow-up of [Pra]. The notation introduced in section 2 of [Pra]
will be used throughout the discussion.

In this paper we investigate a certain kind of stability property of weighted
integrals in R2 of the form ∫

B

|g(x, y)|ε

|f(x, y)|δ
dy dx, (0.1)

where f and g are real-analytic, complex-valued functions in a neighborhood
of the origin, f(0) = g(0) = 0 and ε and δ are positive numbers. When
g ≡ 1, integrals of the above form arise naturally in numerous problems in
harmonic analysis, specifically in connection with growth rate of real-analytic
functions and decay rates of oscillatory integrals. In particular, for g ≡ 1
and in dimension n = 2, the problem of finiteness and stability (with respect
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to real-analytic perturbations of f) of the integral in (0.1) has been fully
treated by Phong, Stein and Sturm [PSS99], while the related problems of
determining the oscillation index of a two-dimensional oscillatory integral and
stability thereof dates back to Varchenko [Var76] and Karpushkin [Kar86b]
[Kar86a]. It would be of considerable interest, however, to tackle the issue in
higher dimensions (i.e. n > 3) where the problem of finiteness and stability
of the unweighted integral ((0.1) with g ≡ 1) is still poorly understood and
finiteness and stability results are, at best, partial (see [Var76]).

Weighted integrals of the form (0.1) sometimes arise from their unweighted
higher dimensional analogues after a suitable change of coordinates, espe-
cially if the higher dimensional f comes equipped with certain symmetries
that can be exploited to reduce the dimension. A case in point is the impor-
tant counterexample given by Varchenko in the context of oscillatory integrals
in R3 (see section 5, [Var76]). This is a continuous real-analytic deformation
of a function of three variables, where the oscillation index is known to pos-
sess a discontinuity. In our situation, Varchenko’s example translates to∫∫∫

B3⊂R3

dx1 dx2 dx3∣∣(λx2
1 + x4

1 + x2
2 + x2

3)
2 + x4p

1 + x4p
2 + x4p

3

∣∣δ , (0.2)

where λ is a real parameter and p is a sufficiently large natural number.
Now, a few trivial size estimates coupled with a cylindrical change of co-
ordinates transforms the above three-dimensional unweighted integral to a
two-dimensional weighted one, given by∫∫

B2⊂R2

|y| dy dx

|(y2 + x4 + λx2)2 + x4p + y4p|δ
. (0.3)

Clearly, the integral in (0.2) converges if and only if the integral in (0.3) does.
In general, the hope is that results for integrals of the form (0.1) would shed
some light on the behavior of the higher-dimensional unweighted ones they
arise from.

While uniform estimates on integrals of the form (0.1) are of interest,
there are many ways in which such a stability problem may be formulated.
One of them is to consider an integral of the form (0.1) in the setting of
weighted inequalities. This is the approach we have chosen in the present
paper. Following standard literature, we review the definition of Ap weights:

Definition 0.1 Let 1 < p < ∞. A locally integrable function ω : Rn → R
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is said to be an Ap weight (or satisfy the Ap inequality) on Rn if(
1

|B|

∫
B

ω(x) dx

)(
1

|B|

∫
B

ω(x)−
p′
p dx

) p
p′

≤ A < ∞ (0.4)

for all balls B ⊂ Rn. Here p′ is the dual of p, i.e. p−1 + p′−1 = 1.
ω will be called an Ap weight on V ⊆ Rn if the uniform bound given by (0.4)
holds for all balls B ⊂ V .

The theory of weighted inequalities has a rich history in the literature. For
a discussion of the main results on this topic and further references, see for
example chapter 5 of [Ste93].

The goal of this paper is to obtain for a fixed p with 1 < p < ∞ a
necessary and sufficient condition for the function

|g(x, y)|ε

|f(x, y)|δ

to be an Ap weight in a small neighborhood of the origin.
The paper is divided into three sections. The first section is a review of

the notation and terminology in [Pra] that will be needed for our analysis.
The second section contains the statement and proof of the main result.
Here we have followed the techniques used by Phong and Stein [PS97] to
analyze a related problem, namely that of computing the decay rate of a
degenerate oscillatory integral operator on R. The final section provides an
interpretation of the algebraic inequalities obtained in the statement of the
main theorem. It also offers a comparison of the condition obtained with its
analogue in dimension one.

1 Notation and Preliminary Reductions

We begin with a brief review of the notation introduced in [Pra]. In view
of the Weierstrass Preparation Theorem, f and g may be expressed, after a
nonsingular change of coordinates, as polynomials in y with coefficients in x,
modulo some nonvanishing factors. Factoring out these nonvanishing terms
we write f and g as

f(x, y) = xα̃1yβ̃1

∏
ν ; ν∈If

(y − rν (x)) , g(x, y) = xα̃2yβ̃2

∏
µ ; µ∈Ig

(y − sµ (x)) ,

(1.1)
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where α̃1, α̃2, β̃1 and β̃2 are non-negative integers and rν (x), sµ(x) are the
non-trivial zeros of f and g respectively. If and Ig are index sets that are
in one-to-one correspondence with the roots of f and g respectively. In a
small neighborhood of the origin these roots admit fractional power series
expansions in x, the so-called Puiseux series

rν (x) = cνx
aν + O

(
xbν
)
, sµ (x) = cµx

aµ + O
(
xbµ
)
.

Here the exponents aν , aµ, bν , bµ are rational numbers and the leading co-
efficients cν , cµ are nonzero scalars. We order the combined set of distinct
leading exponents aν , aµ-s into one increasing list of exponents al,

0 < a1 < a2 < · · · < al < al+1 < · · · < aN .

The generalized multiplicity of f (respectively g) corresponding to al, denoted
by ml (respectively nl), is defined as follows

ml := #{ν : rν (x) = cνx
al + · · · , for some cν 6= 0},

nl := #{µ : sµ (x) = cµx
al + · · · , for some cµ 6= 0}.

If al does not occur as a leading exponent of any root of f (respectively g)
we set ml = 0 (respectively nl = 0).

The following quantities arise naturally in the description of the Newton
diagrams of f and g (for the definition of the Newton diagram see [PS97]):

Al = α̃1 + a1m1 + a2m2 + · · ·+ alml, Bl = β̃1 + ml+1 + · · ·+ mN ,

Cl = α̃2 + a1n1 + a2n2 + · · ·+ alnl, Dl = β̃2 + nl+1 + · · ·+ nN ,

and

δl =
1 + al

Al + alBl

, δ̃l =
1 + al

Cl + alDl

.

All of the above quantities are coordinate-dependent and may be defined in
any coordinate system ϕ in which f and g have the representations given by
(1.1). Such coordinate systems are called “good” and they have the following
form :

(x, y) 7→ (x, y − q(x)) or (x, y) 7→ (x− q(y), y),

where q is any convergent real-valued Puiseux series in a neighborhood of
the origin. For any good coordinate system ϕ, the weighted Newton distance
of f and g associated to ϕ is defined as follows :

δ0 (g, f, ε ; ϕ) := min
l

[
δl(ϕ)

(
1 +

ε

δ̃l(ϕ)

)]
.
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Here the index l runs through the combined set of leading exponents of
Puiseux series of the roots of f and g expressed in the coordinate system
ϕ ; δl(ϕ), δ̃l(ϕ) are the values of δl and δ̃l respectively computed in these
coordinates. The weighted Newton distance plays an important role in the
description of the set S(g, f) given by

S(g, f) :=
{

(ε, δ) ; ε, δ > 0,

∫
B(0;r)

|g(x, y)|ε

|f(x, y)|δ
dy dx < ∞

for all sufficiently small r > 0
}

.

For more details on the notation and a precise description of S(g, f) in terms
of the weighted Newton distance, see [Pra]. We shall use the properties of
S(g, f) outlined in the proof of Theorem 1 in [Pra] to solve the Ap weight
problem mentioned above.

2 The Main Theorem

Theorem 2.1 Suppose f and g are real-analytic (possibly complex-valued)
functions in a neighborhood of the origin in R2, f(0) = g(0) = 0. Let
1 < p < ∞. Then there exists a compact neighborhood K of the origin with

|g|ε

|f |δ
∈ Ap(K)

if and only if both of the following conditions hold :

(1) (ε, δ) ∈ S(g, f), (δ, ε)
p′

p
∈ S(f, g),

(2) For every admissible transformation associated to the pair (f, g), and for

every l,
(a) − 1 < εDl−1 − δBl−1 < p− 1 if al > 1

(b) − 1 < εDl − δBl < p− 1 if al = 1

(c) − 1 < εCl − δAl < p− 1 if al < 1


where al, Al, Bl, Cl and Dl depend on the particular choice of coordinates
mentioned above.
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Proof of Theorem :
First we shall prove necessity. Note that we need (ε, δ) ∈ S(g, f) and

p′

p
(δ, ε) ∈ S(f, g) in order to ensure convergence of the integrals

∫
B

|g|ε

|f |δ
dy dx and

∫
B

|f |δ
p′
p

|g|ε
p′
p

dy dx

respectively, for small balls B centered at the origin. Thus, one only needs
to verify condition (2) in the statement of the theorem.

Let us first consider the admissible transformation (x, y) 7→ (x, y) and fix
l such that al+1 > 1. Choose b such that max (1, al) < b < al+1. Then it is a
consequence of |g|ε/|f |δ ∈ Ap(K) that

sup
λ<λ0

(
1

λ2b

∫
B((λ,0);λb)

|g(x, y)|ε

|f(x, y)|δ
dy dx

) 1

λ2b

∫
B((λ,0);λb)

|f(x, y)|δ
p′
p

|g(x, y)|ε
p′
p

dy dx


p
p′

= sup
λ<λ0

(∫
B(0;1)

|g(λ + xλb, yλb)|ε

|f(λ + xλb, yλb)|δ
dy dx

)∫
B(0;1)

|f(λ + xλb, yλb)|δ
p′
p

|g(λ + xλb, yλb)|ε
p′
p

dy dx


p
p′

(2.1)
has to be finite for λ0 sufficiently small.

Now, borrowing the notation from Theorem 1 of [Pra], we write

f(λ + xλb, yλb) = (λ + xλb)α̃1(yλb)β̃1

∏
ν ; ν∈If

(yλb − rν(λ + xλb)

= (λ + xλb)α̃1(yλb)β̃1

∏
ν ; ν∈If

(yλb − cν(λ + xλb)aν − · · · ),

where ν is an index that ranges over all the roots y = rν(x) of f in a
neighborhood of the origin, aν is the leading exponent of rν and cν 6= 0
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is the leading coefficient. So,

f(λ + xλb, yλb) =λα̃1(1 + xλb−1)α̃1λbβ̃1yβ̃1

∏
ν: aν≤al

λaν
(
yλb−aν − cν(1 + xλb−1)aν − · · ·

)
×

∏
ν: aν>al

λb
(
y − cνλ

aν−b(1 + xλb−1)aν − · · ·
)

= λAl+bBl(1 + xλb−1)α̃1yβ̃1

∏
ν: aν≤al

(
yλb−aν − cν(1 + xλb−1)aν − · · ·

)
×

∏
ν: aν>al

(
y − cνλ

aν−b(1 + xλb−1)aν − · · ·
)
.

Since b > 1 and the Puiseux series rν(x) converge in a small neighborhood
K of the origin, we have for every (x, y) ∈ K

lim
λ→0

f(λ + xλb, yλb)

λAl+bBl
= C(f)yBl ,

where C(f) is a a nonzero constant depending on f . Similarly,

lim
λ→0

g(λ + xλb, yλb)

λCl+bDl
= C(g)yDl .

Now we can rewrite (2.1) as

sup
λ<λ0

(∫
B(0;1)

Hλ
1 (x, y) dy dx

)(∫
B(0;1)

Hλ
2 (x, y) dy dx

) p′
p

, (2.2)

where

Hλ
1 (x, y) :=

|g(λ + xλb, yλb)|ε

|f(λ + xλb, yλb)|δ
λδ(Al+bBl)−ε(Cl+bDl),

Hλ
2 (x, y) :=

|f(λ + xλb, yλb)|δ
p′
p

|g(λ + xλb, yλb)|ε
p′
p

λε p′
p

(Cl+bDl)−δ p′
p

(Al+bBl),

with

lim
λ→0

Hλ
1 (x, y) = h1(x, y) := |y|Dlε−Blδ

lim
λ→0

Hλ
2 (x, y) = h2(x, y) := |y|Blδ

p′
p
−Dlε

p′
p
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for every (x, y) in K such that y 6= 0.
By Fatou’s lemma,∫

B(0;1)

h1(x, y) dy dx ≤ lim inf
λ→ 0

∫
B(0;1)

Hλ
1 (x, y) dy dx = lim

λn→ 0

∫
B(0;1)

Hλn
1 (x, y) dy dx

for some sequence {λn}, while∫
B(0;1)

h2(x, y) dy dx ≤ lim inf
λn→ 0

∫
B(0;1)

Hλ
2 (x, y) dy dx = lim

λnk
→ 0

∫
B(0;1)

H
λnk
1 (x, y) dy dx

for a suitable subsequence {λnk
}. Therefore,(∫

B(0;1)

h1(x, y) dy dx

)(∫
B(0;1)

h2(x, y) dy dx

) p
p′

≤ lim
λnk

→ 0

(∫
B(0;1)

H
λnk
1 (x, y) dy dx

)(∫
B(0;1)

H
λnk
2 (x, y) dy dx

) p
p′

< ∞,

using (2.2) and the Ap condition. But this implies∫
B(0;1)

hi(x, y) dy dx < ∞, i = 1, 2

i.e.,
−1 < εDl − δBl < p− 1

In fact, a closer look at the above arguments reveals that we have indeed
proved both 2(a) and 2(b) in the statement of the theorem.

Next, let us consider the case when al < 1. Choose b < 1 such that
al < b < al+1. The Ap condition implies that

sup
λ<λ0

 1

λ
2
b

∫
B

„
(0,λ);λ

1
b

« |g(x, y)|ε

|f(x, y)|δ
dy dx

 1

λ
2
b

∫
B

„
(0,λ);λ

1
b

« |f(x, y)|δ
p′
p

|g(x, y)|ε
p′
p

dy dx


p
p′
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is finite for λ0 small. As before, we compute

f(xλ
1
b , λ + yλ

1
b ) = (xλ

1
b )α̃1(λ + yλ

1
b )β̃1

∏
ν

(
(λ + yλ

1
b )− rν(xλ

1
b )
)

= λ
α̃1
b

+β̃1xα̃1(1 + yλ
1
b
−1)β̃1

×
∏

ν: aν<b

λ
aν
b

(
λ1−aν

b (1 + yλ
1
b
−1)− cνx

aν − · · ·
)

×
∏

ν: aν>b

λ
(
(1 + yλ

1
b
−1)− cνλ

aν
b
−1xaν − · · ·

)
,

which leads to

lim
λ→0

1

λ
Al
b

+Bl

f(xλ
1
b , λ + yλ

1
b ) = C̃(f)xAl

for every (x, y) ∈ K.The same argument involving Fatou’s lemma given ear-
lier now yields

−1 < εCl − δAl < p− 1.

It is important to observe that the above argument applies not only to real-
analytic functions f and g, but to any function of the form∏

κ

(y − tκ(x)) ,

where the product above consists of a finite number of factors and each tκ is
a Puiseux series that converges in a small enough neighborhood of the origin.

Next, let us consider a general admissible transformation ϕ. Without loss
of generality ϕ may be taken to be of the form

(x, y) 7→ (x, y − q(x)),

where q is a real-valued Puiseux series whose leading exponent is larger than
or equal to 1. Let f̃ = f ◦ ϕ and g̃ = g ◦ ϕ be the transformed functions in
these coordinates. Then,

f̃(x′, y′) = (x′)α̃1(y′ + q(x′))β̃1

∏
ν ; ν∈If

(y′ − (rν(x
′)− q(x′)))

g̃(x′, y′) = (x′)α̃2(y′ + q(x′))β̃2

∏
µ ; µ∈Ig

(y′ − (sµ(x′)− q(x′))) .
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The combined set of nontrivial zeros of f̃ and g̃ is therefore given by

{rν(x
′)− q(x′) ; ν ∈ If} ∪ {sµ(x′)− q(x′) ; µ ∈ Ig} ∪ {−q(x′)} .

Let
a1(ϕ) < a2(ϕ) < · · · < al(ϕ) < al+1(ϕ) < · · · (2.3)

be the ordered sequence of leading exponents of roots in the above set. Now,
for any b ≥ 1,∫

B((λ,q(λ));λb)

|g(x, y)|ε

|f(x, y)|δ
dy dx =

∫
D(λ)

|g̃(x′, y′)|ε

|f̃(x′, y′)|δ
dy′ dx′,

where D(λ) is the image of B ((λ, q(λ)) ; λb) under the transformation ϕ.
Since

B

(
(λ, 0);

(
λ

R

)b
)
⊂ D(λ)

for large R, the Ap condition implies

sup
λ<λ0

(∫
B

“
(λ,0);( λ

R)
b
” |g̃(x′, y′)|ε

|f̃(x′, y′)|δ
dy′, dx′

)(∫
B

“
(λ,0);( λ

R)
b
” |f̃(x′, y′)|δ p′

p

|g̃(x′, y′)|ε p′

p

dy′, dx′

) p
p′

< ∞

for some fixed large constant R.
Thus the problem reduces to the one that has already been considered.

Choosing b in various ranges as shown before, i.e.,

max (1, al(ϕ)) < b < al+1(ϕ) if al+1(ϕ) > 1 ,

al(ϕ) < b < al+1(ϕ) if al < 1,

one obtains condition (2) for a general admissible transformation ϕ.

Next, we shall prove sufficiency, i.e., if (ε, δ) belongs to the region spec-
ified by conditions (1) and (2) of the theorem, then we shall show that
|g|ε/|f |δ ∈ Ap(K). The proof depends on the classification of the balls in
a neighborhood of the origin into a finite number of classes depending on the
location of their center (measured by the proximity to the zero variety of f
and g) and their relative sizes (measured by the roots that fall within the
ball). Uniform bounds of the form (0.4) are then obtained for balls in each
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class. Step 1:
Here we show that

sup
λ<λ0

(
1

λ2

∫
B(0;λ)

|g(x, y)|ε

|f(x, y)|δ
dy dx

) 1

λ2

∫
B(0;λ)

|f(x, y)|δ
p′
p

|g(x, y)|ε
p′
p

dy dx


p
p′

< ∞

i.e.,

sup
λ<λ0

(∫
B(0;1)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx

)∫
B(0;1)

|f(λx, λy)|δ
p′
p

|g(λx, λy)|ε
p′
p

dy dx


p
p′

< ∞

for λ0 sufficiently small.
To ease the notation we shall henceforth assume, without loss of general-

ity, that α̃i = β̃i = 0 for i = 1, 2. Then,

f(λx, λy) =
∏
ν∈If

(λy − rν(λx))

= λM
∏

ν ; aν≥1

(
y − 1

λ
rν(λx)

) ∏
ν ; aν<1

(
yλ1−aν − 1

λaν
rν(λx)

)
,

where M is an integer depending on f . Similarly,

g(λx, λy) =
∏
µ∈Ig

(λy − sµ(λx))

= λN
∏

µ ; aµ≥1

(
y − 1

λ
sµ(λx)

) ∏
µ ; aµ<1

(
yλ1−aµ − 1

λaµ
sµ(λx)

)
,

where sµ-s are the roots of g and N is an integer depending on g. Therefore,∫
B(0;1)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx = λNε−Mδ×∫

B(0;1)

|
∏

µ ;aµ≥1 (y − λ−1sµ(λx))
∏

µ ;aµ<1 (yλ1−aµ − λ−aµsµ(λx)) |ε

|
∏

ν ;aν≥1 (y − λ−1rν(λx))
∏

ν ;aν<1 (yλ1−aν − λ−aνrν(λx)) |δ
dy dx

(2.4)
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and

∫
B(0;1)

|f(λx, λy)|δ
p′
p

|g(λx, λy)|ε
p′
p

dy dx = λ(Mδ−Nε) p′
p ×

∫
B(0;1)

|
∏

ν ;aν≥1 (y − λ−1rν(λx))
∏

ν ;aν<1 (yλ1−aν − λ−aνrν(λx)) |δ
p′
p

|
∏

µ ;aµ≥1 (y − λ−1sµ(λx))
∏

µ ;aµ<1 (yλ1−aµ − λ−aµsµ(λx)) |ε
p′
p

dy dx.

We would be done if we show that

sup
λ<λ0

λMδ−Nε

∫
B(0;1)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx < ∞

and

sup
λ<λ0

λ(Nε−Mδ) p′
p

∫
B(0;1)

|f(λx, λy)|δ
p′
p

|g(λx, λy)|ε
p′
p

dy dx < ∞

for λ0 sufficiently small. By symmetry, it suffices to show finiteness for just
one of the above integrals, let us say the first one. For this, we shall de-
compose the domain of integration B(0; 1) into several subregions depending
on the relative sizes of x and y as in the proof of Theorem 1 of [Pra]. In
the sequel, we use the notation A � B to mean that A ≤ C1B for some
small constant C1 depending on f and g. A � B implies A ≥ C2B, and
C1B ≤ A ≤ C2B is denoted by A ∼ B.
Case 1: λal+1−1|x|al+1 � |y| � λal−1|x|al , al ≥ 1.
Since

rν(x) = cνx
aν + o(|x|aν ),

we have

1

λ
rν(λx) = cνλ

aν−1xaν + o(λaν−1|x|aν ) if aν ≥ 1, and

1

λaν
rν(λx) = cνx

aν +
1

λaν
o(|λx|aν ) if aν < 1.

Let

R1(λ, l) := {(x, y) ∈ B(0; 1); λal+1−1|x|al+1 � |y| � λal−1|x|al}.
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Then, on R1(λ, l), the following estimates hold :

|yλ1−aν − λ−aνrν(λx)| ∼ |x|aν if aν < 1

|y − λ−1rν(λx)| ∼

{
λaν−1|x|aν if 1 ≤ aν ≤ al

|y| if aν > al.

Therefore,
1

λNε−Mδ

∫
R1(λ,l)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx (2.5)

∼ λ
ε

P
l′ ; 1≤al′≤al

(al′−1)nl′−δ
P

l′ ; 1≤al′≤al
(al′−1)ml′

∫
R1(λ,l)

|x|εCl−δAl|y|εDl−δBl dy dx

∼ λ
ε

P
l′ ; 1≤al′≤al

(al′−1)nl′−δ
P

l′ ; 1≤al′≤al
(al′−1)ml′

∫ 1

−1

|x|εCl−δAl
(
λal−1xal

)Dlε−Blδ+1
dx

since Dlε−Blδ + 1 > 0. The integral in (2.5) is therefore of size comparable
to

λ
ε

P
l′ ; 1≤al′≤al

(al′−1)nl′−δ
P

l′ ; 1≤al′≤al
(al′−1)ml′+(al−1)(Dlε−Blδ+1)

×
∫ 1

−1

|x|ε(Cl+alDl)−δ(Al+alBl)+al dx.

We note that our assumption (ε, δ) ∈ S(g, f) implies that the above integral
in x converges. Thus, we only need to check that the exponent of λ, namely

Fl := ε
∑

l′ ; 1≤al′≤al

(al′ − 1)nl′ − δ
∑

l′ ; 1≤al′≤al

(al′ − 1)ml′

+ (al − 1)(Dlε−Blδ + 1)

is non-negative. Now,

Fl = ε
∑

l′ ; 1≤al′≤al−1

(al′ − 1)nl′ − δ
∑

l′ ; 1≤al′≤al−1

(al′ − 1)ml′

+ (al − 1) (ε(Dl + nl)− δ(Bl + ml) + 1)

= ε
∑

l′ ; 1≤al′≤al−1

(al′ − 1)nl′ − δ
∑

l′ ; 1≤al′≤al−1

(al′ − 1)ml′

+ (al − 1) (εDl−1 − δBl−1 + 1)

≥ ε
∑

l′ ; 1≤al′≤al−1

(al′ − 1)nl′ − δ
∑

l′ ; 1≤al′≤al−1

(al′ − 1)ml′

+ (al−1 − 1)(εDl−1 − δBl−1 + 1) := Fl−1

13



since al > al−1 and εDl−1− δBl−1 +1 > 0 by assumption. Thus, an inductive
argument shows that

Fl ≥ Fl̃ = (al̃ − 1)(εDl̃−1 − δBl̃−1 + 1) ≥ 0.

where l̃ := min{l ; al ≥ 1}. The integral in (2.5) is therefore finite and
bounded in λ for λ sufficiently small. This completes case 1. We note that
the same arguments apply when y � λa1−1xa1 and y � λaL−1xaL where
aL := maxl al.

Case 2 : |y|
1
al λ

1
al
−1 � |x| � |y|

1
al+1 λ

1
al+1

−1
, al+1 ≤ 1

Let

R2(λ, l) :=
{

(x, y) ∈ B(0; 1); |y|
1
al λ

1
al
−1 � |x| � |y|

1
al+1 λ

1
al+1

−1
}

.

On R2(λ, l) we have :

|y − λ−1rν(λx)| ∼ |y| if aν ≥ 1

|yλ1−aν − λ−aνrν(λx)| ∼

{
|x|aν if aν ≤ al < 1

λ1−aν |y| if 1 ≥ aν > al.

Therefore,
1

λNε−Mδ

∫
R2(λ,l)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx (2.6)

∼ λ
ε

P
l′ ; 1>al′≥al

(1−al′ )nl′−δ
P

l′ ; 1>al′≥al
(1−al′ )ml′

∫
R2(λ,l)

|x|εCl−δAl|y|εDl−δBl dy dx

∼ λ
ε

P
l′ ; 1>al′≥al

(1−al′ )nl′−δ
P

l′ ; 1>al′≥al
(1−al′ )ml′×∫ 1

−1

|y|εDl−δBl

(
λ

1
al+1

−1
y

1
al+1

)Clε−Alδ+1

dy

(since εCl − δAl + 1 > 0)

∼ λ
ε

P
l′ ; 1>al′≥al

(1−al′ )nl′−δ
P

l′ ; 1>al′≥al
(1−al′ )ml′+

„
1

al+1
−1

«
(εCl−δAl+1)

×
∫ 1

−1

y
ε

„
Dl+

Cl
al+1

«
−δ

„
Bl+

Al
al+1

«
+ 1

al+1 dy.
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The integral in y converges because (ε, δ) ∈ S(g, f). As before, we use
condition (2) to determine the sign of the exponent of λ:

F̃l := ε
∑

l′ ; 1>al′≥al

(1− al′) nl′ − δ
∑

l′ ; 1>al′≥al

(1− al′) ml′

+

(
1

al+1

− 1

)
(εCl − δAl + 1)

= ε
∑

l′ ; 1>al′≥al+1

(1− al′) nl′ − δ
∑

l′ ; 1>al′≥al+1

(1− al′) ml′

+

(
1

al+1

− 1

)
(εCl+1 − δAl+1 + 1)

≥ ε
∑

l′ ; 1>al′≥al+1

(1− al′) nl′ − δ
∑

l′ ; 1>al′≥al+1

(1− al′) ml′

+

(
1

al+2

− 1

)
(εCl+1 − δAl+1 + 1)

= F̃l+1 ≥ · · ·

≥ F̃l∗ = ε(1− al∗)nl∗ − δ(1− al∗)ml∗ +

(
1

al∗
− 1

)
(εCl∗−1 − δAl∗−1 + 1)

where l∗ = max{l ; al < 1}

=

(
1

al∗
− 1

)
(εCl∗ − δAl∗ + 1)

which is positive. This proves the boundedness of the integral in (2.6) for
small λ.
Case 3 :λal+1−1|x|al+1 � |y| � λal−1|x|al , al < 1, al+1 ≥ 1.
As before, we define

R3(λ, l) :=
{
(x, y) ∈ B(0; 1) ; λal+1−1|x|al+1 � |y| � λal−1|x|al

}
.
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Then,

1

λεN−δM

∫
R3(λ,l)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx

∼
∫

R3(λ,l)

|x|εCl−δAl|y|εDl−δBl dy dx

∼


∫ 1

−1

|x|εCl−δAl max
[(

λal−1|x|al
)εDl−δBl+1

,
(
λal+1−1|x|al+1

)εDl−δBl+1
]

dx if λal−1|x|al . 1,∫ 1

−1

|x|εCl−δAl max
[
1,
(
λal+1−1|x|al+1

)εDl−δBl+1
]

dx if λal−1|x|al & 1.


Let us first consider the case when λal−1|x|al . 1. Then the integral above
is of size comparable to

max
[
λ

“
1
al
−1

”
(εCl−δAl+1)

, λ(al+1−1)(εDl−δBl+1)×

λ

“
1
al
−1

”
[ε(Cl+1+al+1Dl+1)−δ(Al+1+al+1Bl+1)+al+1+1]

]
. (2.7)

We know, by assumption, that

εCl − δAl + 1 > 0 for al < 1

while

(al+1 − 1) (εDl − δBl + 1) = 0 if al+1 = 1

> 0 if al+1 > 1.

Also,
ε (Cl+1 + al+1Dl+1)− δ (Al+1 + al+1Bl+1) + al+1 + 1 > 0

since (ε, δ) ∈ S(g, f). The expression in (2.7) is therefore bounded.
Next, let us consider the situation when λal−1|x|al & 1. A similar com-

putation as above shows that the integral in this case is of size comparable
to

max

[
λ

“
1
al
−1

”
(εCl−δAl+1)

, λ(al+1−1)(εDl−δBl+1)

]
Once again, our assumption implies that the integral is bounded above for
small λ.
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Case 4 : |y| ∼ λal−1|x|al , al ≥ 1
Let

R4(λ, l) := {(x, y) ∈ B(0; 1) ; |y| ∼ λal−1|x|al}.
Using the algorithm described in the proof of Theorem 1 of [Pra] we decom-
pose the region R4(λ, l) as

R4(λ, l) =
⋃

i∈Γ(l)

Ri
4(λ, l),

where Γ(l) is a finite index set ranging over the different steps involved in
the process of resolution of the cluster Sl. For every i ∈ Γ(l) there exists an
admissible transformation ϕi associated to the weighted integral in (2.4) and
a positive integer li satisfying the following properties :

ϕi : (x, y) 7→
(

x, y − 1

λ
qi(λx)

)
for some qi ∈ Sl,

and

Ri
4(λ, l) :=

{
(x, y) ∈ B(0; 1) ; λali+1(ϕi)−1|x|ali+1(ϕi) � |y − 1

λ
qi(λx)| � λali

(ϕi)−1|x|ali
(ϕi)

}
.

Here, the elements of the sequence

a1(ϕi) < a2(ϕi) < · · · < al′(ϕi) < al′+1(ϕi) < · · ·

are defined as in (2.3) with q replaced by qi. It is a consequence of the
decomposition algorithm that for every i ∈ Γ(l),

al′(ϕi) = al′ , ml′(ϕi) = ml′ , nl′(ϕi) = nl′ if l′ ≤ l − 1,

Dl−1(ϕi) = Dl−1, Bl−1(ϕi) = Bl−1,

al′(ϕi) ≥ al if l′ ≥ l,

li ≥ l.

 (2.8)

Now,

1

λεN−δM

∫
R4(λ,l)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx =

1

λεN−δM

∑
i

∫
Ri

4(λ,l)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx

=
∑

i

∫
Ri

4(λ,l)

|
∏

µ∈Ig
(y − λ−1sµ (λx)) |ε

|
∏

ν∈If
(y − λ−1rν (λx)) |δ

dy dx.
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Applying the change of variables

ϕi ; x 7→ x, y 7→ yi = y − 1

λ
qi(λx)

in the i-th term reduces the above sum to∑
i

∫
ϕi(Ri

4(λ,l))

|
∏

µ∈Ig
[yi − λ−1 (sµ (λx)− qi (λx))] |ε

|
∏

ν∈If
[yi − λ−1 (rν (λx)− qi (λx))] |δ

dyi dx

∼
∑

i

λFli
(ϕi)

∫ 1

−1

|x|ε[Cli
(ϕi)+ali

(ϕi)Dli
(ϕi)]−δ[Ali

(ϕi)+ali
(ϕi)Bli

(ϕi)]+ali
(ϕi)dx,

where al(ϕi), Al(ϕi), Bl(ϕi), Cl(ϕi), Dl(ϕi), Fl(ϕi) are the quantities al, Al,
Bl, Cl, Dl, Fl respectively, computed in the coordinates ϕi. The expression in
the last step above follows from estimates similar to the ones obtained in case
1. The integral in x converges because (ε, δ) ∈ S(g, f), while a repetition of
the monotonicity argument presented in case 1 shows that

Fli (ϕi) ≥ Fli−1 (ϕi) ≥ · · · ≥ Fl (ϕi) .

But (2.8) implies that
Fl(ϕi) = Fl

for every i ∈ Γ(l), and we have seen in case 1 that Fl is non-negative. Thus
one concludes that

sup
λ<λ0

1

λεN−δM

∫
R4(λ,l)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx < ∞

for λ0 sufficiently small.
Case 5 : y ∼ λal−1|x|al , al < 1
We omit the details of this case, as they are remarkably similar to case 4.
In fact, one way of treating this case is to interchange the roles of x and y,
so that al gets replaced by 1

al
which is larger than 1, and then apply case 4.

This completes the proof of step 1.

Our next task is to show that the expression

(
1

λ2

∫
B

|g|ε

|f |δ
dy dx

) 1

λ2

∫
B

|f |δ
p′
p

|g|ε
p′
p

dy dx


p
p′
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is bounded for all balls B = B ((x0, y0); λ) ⊂ K such that (x0, y0) 6= 0. If
|x0| + |y0| . λ, then B ⊆ B(0; Cλ) for a suitable constant C and we may
invoke step 1 to obtain the desired conclusion. Thus, it suffices to consider
balls B for which |x0|+ |y0| � λ. Without loss of generality, we may assume
that |y0| . |x0|. Balls satisfying this property may be further subdivided
according to the following restrictions :

• |y0| � |x0|aN , |x0|al+1 � |y0| � |x0|al for l ≥ 1, or |y0| � |x0|a1 , or

• |y0| ∼ |x0|al , l ≥ 1.

Step 2 :
Here we show that

sup
λ<λ0

(x0,y0) ; |x0|al+1�|y0|�|x0|al

(
1

λ2

∫
B

|g(x, y)|ε

|f(x, y)|δ
dy dx

) 1

λ2

∫
B

|f(x, y)|δ
p′
p

|g(x, y)|ε
p′
p

dy dx


p
p′

< ∞

(2.9)
for all l with al ≥ 1.
Case 1 : λ . |x0|al+1

In this case,
B ⊆ {(x, y) ∈ K ; |x|al+1 � |y| � |x|al}

and hence,
|f(x, y)| ∼ |x|Al|y|Bl ∼ |x0|Al|y0|Bl

g(x, y) ∼ |x|Cl|y|Dl ∼ |x0|Cl|y0|Dl .

Clearly (2.9) holds in this case.
Case 2 : |x0|al+1 � λ � |x0|al

Here we have
B ⊆ {(x, y) ∈ K ; |y| � |x|al},

which roughly means that the roots of f and g that “cross” the ball B cannot
have leading exponent less than or equal to al. Therefore,

1

λ2

∫
B

|g(x, y)|ε

|f(x, y)|δ
.

1

λ2

∫ x0+λ

x0−λ

∫ y0+λ

y0−λ

|
∏

µ ; aµ≥al+1
(y − sµ(x)) |ε

|
∏

ν ; aν≥al+1
(y − rν(x)) |δ

dy |x|εCl−δAl dx

=
1

λ2

(∑
l′ ; l′≥l

Il′ +
∑

l′ ; l′≥l+1

Jl′

)
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where

Il′ :=

∫
[x0−λ, x0+λ]×[y0−λ, y0+λ]∩R1(1,l′)

|
∏

µ ; aµ≥al+1
(y − sµ(x)) |ε

|
∏

ν ; aν≥al+1
(y − rν(x)) |δ

|x|εCl−δAl dy dx,

and

Jl′ :=

∫
[x0−λ, x0+λ]×[y0−λ, y0+λ]∩R4(1,l′)

|
∏

µ ; aµ≥al+1
(y − sµ(x)) |ε

|
∏

ν ; aν≥al+1
(y − rν(x)) |δ

|x|εCl−δAl dy dx.

Using estimates for the integrand obtained in step 1, we obtain the following
size estimates for Il′ :

Il′ ∼ |x0|ε(Cl′+al′Dl′ )−δ(Al′+al′Bl′ )+alλ if l′ ≥ l + 1,

while

Il ∼
∫ x0+λ

x0−λ

|x|εCl−δAl

∫
[y0−λ,y0+λ]∩{y ; (x,y)∈R1(1,l)}

|y|εDl−δBl dy

∼


∫ x0+λ

x0−λ

|x|εCl−δAlλεDl−δBl+1 dx if λ & |y0|∫ x0+λ

x0−λ

|x|εCl−δAl|y0|εDl−δBlλ dx if λ . |y0|


∼

{
|x0|εCl−δAlλεDl−δBl+2 if λ & |y0|
|x0|εCl−δAlyεDl−δBl

0 λ2 if λ . |y0|

}
.

On the other hand, the resolution scheme in the proof of Theorem 1 of [Pra]
provides a decomposition of R4(1, l

′), as we have observed in case 4 of step
1. Therefore Jl′ may be bounded by a sum of integrals as follows :

Jl′ ≤
∑

i∈Γ(l′)

J i
l′ for every l′ ≥ l + 1,

where

J i
l′ :=

∫
[x0−λ, x0+λ]×[y0−λ, y0+λ]∩Ri

4(1,l′)

|
∏

µ ; aµ≥al+1
(y − sµ(x)) |ε

|
∏

ν ; aν≥al+1
(y − rν(x)) |δ

|x|εCl−δAl dy dx.

It is not difficult to see, using arguments employed in case 1 of step 1, that J i
l′

is easily estimable for every i ∈ Γ(l′). In fact, one obtains after the standard
change of variables ϕi that

J i
l′ ∼ λ|x0|ε[Cli

(ϕi)+ali
(ϕi)Dli

(ϕi)]−δ[Ali
(ϕi)+ali

(ϕi)Bli
(ϕi)]+ali

(ϕi).
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We have therefore bounded the first integral in (2.9) by a sum of terms
whose individual sizes are under control. The problem is now to determine
the dominant term. We claim that(∑

l′ ; l′≥l

Il′ +
∑

l′ ; l′≥l+1

Jl′

)
∼ Il.

To prove our claim, we shall first show that

Il′ . Il for l′ > l.

For this, we note that for every l′ with al′ ≥ 1,

[ε(Cl′+1 + al′+1Dl′+1)− δ(Al′+1 + al′+1Bl′+1) + al′+1]

− [ε(Cl′ + al′Dl′)− δ(Al′ + al′Bl′) + al′ ]

= (al′+1 − al′)(εDl′ − δBl′ + 1)

> 0.

Therefore, for l′ > l,

Il′ . Il+1

∼ λ|x0|[ε(Cl+1+al+1Dl+1)−δ(Al+1+al+1Bl+1)+al+1]

. |x0|εCl−δAlλ2 min
(
λεDl−δBl , |y0|εDl−δBl

)
,

where the last inequality follows from

εDl − δBl + 1 > 0 and λ, |y0| � |x0|al+1 .

In other words, Il′ . Il, l′ > l.
The proof for showing that

J i
l′ . Il for all l′ ≥ l + 1 and all i ∈ Γ(l′)

is similar. Condition (2) implies that for every i ∈ Γ(l′),

ε [Cr(ϕi) + ar(ϕi)Dr(ϕi)]− δ [Ar(ϕi) + ar(ϕi)Br(ϕi)] + ar(ϕi)
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is an increasing function of r in the range where ar(ϕi) ≥ 1. Since li ≥ l′ for
every i ∈ Γ(l′), we have

ε [Cli (ϕi) + ali (ϕi) Dli (ϕi)]− δ [Ali (ϕi) + ali (ϕi) Bli (ϕi)] + ali (ϕi)

≥ ε [Cl′ (ϕi) + al′ (ϕi) Dl′ (ϕi)]− δ [Al′ (ϕi) + al′ (ϕi) Bl′ (ϕi)] + al′ (ϕi)

= ε [Cl′−1 (ϕi) + al′ (ϕi) Dl′−1 (ϕi)]− δ [Al′−1 (ϕi) + al′ (ϕi) Bl′−1 (ϕi)] + al′ (ϕi)

= εCl′−1 − δAl′−1 + al′(ϕi) [εDl′−1 − δBl′−1 + 1]

≥ ε (Cl′−1 + al′Dl′−1)− δ (Al′−1 + al′Bl′−1) + al′

= ε (Cl′ + al′Dl′)− δ (Al′ + al′Bl′) + al′ .

In the above computations, we have made use of condition (2) and properties
of the decomposition procedure listed in (2.8). Thus, for l′ ≥ l + 1,

Jl′ . Il′ . Il.

In conclusion, we have,

1

λ2

∫
B

|g(x, y)|ε

|f(x, y)|δ
dy dx ∼ 1

λ2
Il

∼

{
|x0|εCl−δAlλεDl−δBl if λ & |y0|
|x0|εCl−δAl|y0|εDl−δBl if λ . |y0|

}
while

1

λ2

∫
B

|f(x, y)|δ
p′
p

|g(x, y)|ε
p′
p

dy dx ∼

 |x0|(δAl−εCl)
p′
p λ(δBl−εDl)

p′
p if λ & |y0|

|x0|(δAl−εCl)
p′
p |y0|(δBl−εDl)

p′
p if λ . |y0|


This completes the proof of case 2.

Case 3 : λ ∼ |x0|al

In this case, the roots crossing the ball B may have leading exponents
greater than or equal to al, so arguments similar to case 2 show that

1

λ2

∫
B

|g(x, y)|ε

|f(x, y)|δ
dy dx ∼ |x0|ε(Cl+alDl)−δ(Al+alBl)

The cases |x0|al′+1 � λ � |x0|al′ , λ ∼ |x0|al′ for l′ ≤ l are all treated by
repeated applications of the arguments given above. The proof of step 2 is
therefore complete.

Step 3 :
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In this final step, we show that

sup
λ<λ0

(x0,y0) ; |y0|∼|x0|al

(
1

λ2

∫
B

|g(x, y)|ε

|f(x, y)|δ
dy dx

) 1

λ2

∫
B

|f(x, y)|δ
p′
p

|g(x, y)|ε
p′
p

dy dx


p
p′

< ∞

(2.10)
for all l with al ≥ 1.

This step does not involve any idea beyond what has been already pre-
sented earlier in the proof, so we shall only discuss the key point that high-
lights the similarity with the previous cases. The idea is to use the decom-
position

R4(1, l) =
⋃

i∈Γ(l)

Ri
4(1, l)

to bound the supremum in (2.10) by the largest of several suprema, each over
a domain of the form

(x0, y0) ∈ Ri
4(1, l), λ < λ0.

We claim that the problem is then reduced to one of the type handled in step
2.

Fix i ∈ Γ(l) and put qi = q. Then,

1

λ2

∫
[x0−λ,x0+λ]×[y0−λ,y0+λ]

|g(x, y)|ε

|f(x, y)|δ
dy dx =

1

λ2

∫
x0−λ≤x′≤x0+λ

y0−λ−q(x′)≤y′≤y0+λ−q(x′)

|g̃(x′, y′)|ε

|f̃(x′, y′)|δ
dy′ dx′

where
x′ = x, y′ = y − q(x)

and
f̃(x′, y′) = f(x′, y′ + q(x′)), g̃(x′, y′) = g(x′, y′ + q(x′)).

Now, if x0 − λ ≤ x′ ≤ x0 + λ, then by the mean-value theorem

|q(x)− q(x0)| . λxal−1
0 . λ.
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Therefore,

{(x′, y′) ; x0 − λ ≤ x′ ≤ x0 + λ, y0 − λ− q(x′) ≤ y′ ≤ y0 + λ− q(x′)}
=
{
(x′, y′) ; x0 − λ ≤ x′ ≤ x0 + λ,

− λ− (q(x′)− q(x0)) ≤ y′ − (y0 − q(x0)) ≤ λ− (q(x′)− q(x0))
}

⊆{(x′, y′) ; x0 −Rλ ≤ x′ ≤ x0 + Rλ,−Rλ ≤ y′ − y′0 ≤ Rλ}

for a suitable large constant R, where y′0 = y0 − q(x0). This implies

1

λ2

∫
[x0−λ,x0+λ]×[y0−λ,y0+λ]

|g(x, y)|ε

|f(x, y)|δ
dy dx .

1

λ2

∫
[x0−Rλ,x0+Rλ]×[y′0−Rλ,y′0+Rλ]

|g̃(x′, y′)|ε

|f̃(x′, y′)|δ
dy′ dx′.

Since
|x0|ali+1(ϕi) � |y′0| � |x0|ali

(ϕi) on Ri
4(1, l),

the integral on the right hand side is of the type encountered in step 2. This
completes the proof of the theorem.

�

3 Remarks and Examples

It is of interest to contrast the statement of Theorem 2 with its analogue in
dimension 1. For i = 1, 2, let hi be a real-analytic function in a neighborhood
of the origin in R, with

hi(x) = xKih̃i(x), h̃i(0) 6= 0.

We have

(
1

2r

∫ r

−r

|h2(x)|ε

|h1(x)|δ
dx

) 1

2r

∫ r

−r

|h1(x)|δ
p′
p

|h2(x)|δ
p′
p

dx


p
p′

< ∞ (3.1)

for a fixed small r if and only if

−1 < εK2 − δK1 < p− 1. (3.2)
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One sees from elementary considerations that (3.2) is also a necessary and
sufficient condition for |h2|ε/|h1|δ to be an Ap weight in [−r, r]. One may view
this property as a certain form of “stability”, where the finiteness condition
(3.1) for a fixed small ball implies boundedness of the same expression for all
smaller sub-balls, i.e.,

sup
I⊆[−r,r]

(
1

|I|

∫
I

|h2(x)|ε

|h1(x)|δ
dx

) 1

|I|

∫
I

|h1(x)|δ
p′
p

|h2(x)|ε
p′
p

dx


p
p′

< ∞.

Our discussion shows that the weighted integral in R1 is stable in this sense.
This is however not the case in dimension 2. In other words, condition (1) is
not enough to ensure that |g|ε/|f |δ ∈ Ap(K) for some compact neighborhood
K of the origin, as is illustrated by the following example.

Consider

f(x, y) = (y − x)(y − x2) · · · (y − xN), g(x, y) = y − x, ε = 1.

where N is a large positive integer. We shall see that for this example,
condition (1) in the statement of the theorem is equivalent to

δ < δC00 (g, f, 1) = min

(
1, min

l

2(l + 2)

l(2N − l + 1)

)
, (3.3)

while condition (2) implies

δ <
1

N − 1
. (3.4)

For N sufficiently large and 1 ≤ l ≤ N , one has

1

N − 1
<

2(l + 2)

l(2N − l + 1)
,

which shows that condition (2) is, in general, more restrictive than (1).
In order to prove the inequalities (3.3) and (3.4), one needs to observe

that the Newton diagram of f has vertices at the points(
l(l + 1)

2
, N − l

)
, 0 ≤ l ≤ N,
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while the Newton diagram of g has two vertices, (0,1) and (1,0). A direct
computation shows that

δ−1
l =

l(2N − l + 1)

2(l + 1)
and δ̃−1

l =
1

l + 1
, 1 ≤ l ≤ N.

Therefore, we have

δl

(
1 +

1

δ̃l

)
=

2(l + 2)

l(2N − l + 1)
, 1 ≤ l ≤ N. (3.5)

The nontrivial admissible transformations associated to the pair (f, g) are
given by

ϕl : (x, y) 7→ (x, y − xl), 1 ≤ l ≤ N,

from which the generalized Newton diagrams of f ◦ϕl and g ◦ϕl may also be
described explicitly. For l ≥ 2, a direct analysis of these Newton diagrams

shows that the only value of δk(ϕl)
(
1 + (δ̃k(ϕl))

−1
)

not already listed in

(3.5) is 1. For the case l = 1, the only new addition is 2. Putting these facts
together, we get (3.3). On the other hand, under the identity transformation,
B1 = N − 1 and D1 = 0, from which (3.4) follows.

The above example reflects the inherent “instability” of the weighted
integral in R2, a feature we have seen is absent in R1. The reason for this is
most apparent in Step 1 of the proof, where we employ a scaling argument
to reduce the integral

1

λ2

∫
B(0;λ)

|g(x, y)|ε

|f(x, y)|δ
dy dx

to the expression on the right hand side of (2.4) . Notice that as λ → 0,
the scaling process “clumps” together all roots of f and g into three well-
separated clusters. Roots which have leading exponent strictly larger than 1
get clumped into a power of y, while roots with leading exponent strictly less
than 1 merge into a power of x. Roots which have leading exponent equal
to 1 converge to a line of the form y = cx, where c is the leading coefficient
of the “parent” root. The analysis in step 1 of the proof of sufficiency shows
that for (ε, δ) ∈ S(g, f), the expression

λδM−εN

∫
B(0;1)

|g(λx, λy)|ε

|f(λx, λy)|δ
dy dx
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is finite for every λ, but the value of the above integral may well blow up (in
λ) as roots coalesce together. The same phenomenon of clumping takes place
even if we consider a combination of translation and dilation of the form

(x, y) 7→ (λ + xλb, yλb), (3.6)

as seen in the proof of necessity, except that the “clumping pattern” is now
different and depends on the value of b relative to the leading exponents.
Condition (2) enforces that the limiting value of the integrand, after suitable
translations and scalings, continues to be integrable - but this may, in general,
pose a restriction on the set of ε and δ defined in (1), as we have observed in
the example.

It is also possible to view the phenomenon of instability from a different
perspective. Instead of comparing the average of the weighted integral over
a fixed small ball with its average over all smaller sub-balls, we may look at
the integral

1

λ2

∫
B((x0,y0);λ)

|g(x, y)|ε

|f(x, y)|δ
dy dx,

after suitable scaling, as a “perturbation” of another weighted integral. The
“unperturbed” integral depends on the relative sizes of x0, y0 and λ. To fix
ideas, let us consider a translation-dilation combination of the form (3.6),
where b is chosen as follows :

max(1, al) < b < al+1 for some l with al+1 > 1.

Then, we have seen in the proof of necessity that the function

f(λ + xλb, yλb)

λAl+bBl

may be thought of, for small λ, as an analytic perturbation of the monomial
yBl . A similar interpretation holds for the expression

g(λ + xλb, yλb)

λCl+bDl
.

The integral ∫
B(0;1)

Hλ
1 (x, y) dy dx, (3.7)
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defined in (2.2) may therefore be visualized as a perturbation of the weighted
integral ∫

B(0;1)

|y|εDl

|y|δBl
dy dx. (3.8)

One may ask whether the condition

εDl − δBl + 1 > 0,

which ensures convergence of the “unperturbed” integral (3.8) would ensure
boundedness of the “perturbed” integral (3.7) (in λ) as well. The answer to
that question is no, as the following example shows.

We consider

f(x, y) = yN and g(x, y) = (y − x2)(y − x3) · · · (y − xN+1),

where N is a positive integer. Let us choose b = 1. Then

lim
λ→0

f(λ + xλ, yλ)

λN
= lim

λ→0

g(λ + xλ, yλ)

λN
= yN ,

so the necessary and sufficient condition for the “limiting” integral∫
B(0;1)

|y|εN−δN dy dx

to be finite is given by

δ < ε +
1

N
.

However, the above condition is not enough to guarantee that

sup
λ<λ0

λεN−δN

∫
B(0;1)

|g(λ + xλ, yλ)|ε

|f(λ + xλ, yλ)|δ
dy dx < ∞.

Indeed, the integral above converges for a fixed λ only if

δ <
1

N
.

Notice that the clumping phenomenon is again at play here, but in reverse.
The scaling scenario gives rise to perturbation of a certain form, which leaves
the limiting function yN in the denominator unchanged, while separating out

28



the yN in the numerator into N distinct roots.

There is another notion of stability of an integral that should be men-
tioned in this context, though it is not directly related to the Ap problem.
Suppose δ is a positive number such that∫

I(r)⊂Rn

|f |−δ < ∞, (3.9)

where I(r) (respectively U(r)) denotes the closed polydisk of radius r cen-
tered at the origin in Rn (respectively Cn). According to the definition of
Phong, Stein and Sturm [PSS99], the integral in (3.9) is called stable for the
above value of δ if there exists 0 < s < r and ε0 > 0 such that

sup
g

∫
I(s)⊂Rn

|g|−δ < ∞,

where the supremum is taken over all g holomorphic on U(r) and satisfying

|f − g|U(r) < ε0.

Here we have denoted, by a slight abuse of notation, the unique holomorphic
extension of f to U(r) by f as well. It has been shown in [PSS99] that
an unweighted integral of the form (3.9) is stable in R2, according to the
above definition, for all values of δ that ensure convergence of the integral
in (3.9). In dimension 3, the integral in (3.9) has been shown to be stable
provided δ < 2

N
, where N is the multiplicity of f at the origin. Varchenko’s

counterexample (section 5 in [Var76]) shows that this result is, in general,
sharp.

There exists a suitable variant of the stability problem mentioned above
for the weighted integral. This is especially interesting if the weighted integral
is derived from a higher dimensional unweighted integral, as in the case
of Varchenko’s example. The appropriate analogue of Phong and Stein’s
definition of stability in this situation is the following :
Let ε and δ be two positive numbers such that the weighted integral in R2 of
the form ∫

I(r)

|g|ε

|f |δ
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is finite. The above integral will be called stable for the given values of ε and
δ if there exists 0 < s < r and ε0 > 0 such that

sup
h

∫
I(s)

|g|ε

|h|δ
< ∞,

where the supremum is taken over all functions h holomorphic on U(r) and
satisfying |f − h|U(r) < ε0.

Varchenko’s example, coupled with Phong and Stein’s results in dimen-
sions 2 and 3, suggests that the two-dimensional weighted integral is, in
general, not stable in the above sense with respect to the class of all holo-
morphic perturbations of f even though its unweighted analogue is. This
however opens up new problems of its own, and it is natural to ask if there is
a different class of perturbations for which stability does hold in the weighted
situation. We shall return to these issues in a subsequent paper.
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