Arithmetic Quantum Chaos – An Introduction

Lior Silberman[†]

December 1st, 2005

1

[†]School of Mathematics, Institute for Advanced Study

Homepage: http://www.math.ias.edu/~lior

Mechanics of a Free Particle

Classical Mechanics - Examples

Ex. 1: (Cardioid) planar domain with a piecewise smooth boundary. Ex. 2: (Flat Torus) compact Riemannian manifold (M^n, ds^2) .

Ex. 3: Surfaces of constant negative curvature

- $\mathbb{H} = \{x + iy \mid y > 0\}$ with the metric $ds^2 = \frac{dx^2 + dy^2}{y^2}$.
- $G = SL_2(\mathbb{R})$ acts by the isometries $z \mapsto \frac{az+b}{cz+d}$.
- $K = \operatorname{Stab}_G(i) \simeq \operatorname{SO}_2(\mathbb{R})$, so that $\mathbb{H} \simeq \operatorname{SL}_2(\mathbb{R})/\operatorname{SO}_2(\mathbb{R})$.
- $M = \Gamma \setminus \mathbb{H}$ for a *lattice* $\Gamma < SL_2(\mathbb{R})$ (= discrete subgroup of finite co-volume).

Example: $SL_2(\mathbb{Z}) \setminus \mathbb{H}$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot z = z + 1$ ("translation") $\begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot z = -\frac{1}{z}$ ("inversion") together generate the lattice $\Gamma = SL_2(\mathbb{Z})$.

Classical Mechanics

Definition.

- State of motion: a possible position z ∈ M and velocity v ∈ T_z^{*}M (≃ ℝⁿ)
 Fact (Newton): given the current state (z, v), there exists a unique state (z', v') the system will reach after t units of time.
- <u>Phase space</u> $T^*M \stackrel{\text{def}}{=} \{ \text{all such pairs } (z, \vec{v}) \}.$ Also set $X = T^1M = \{ (z, \vec{v}) \in T^*M | \|\vec{v}\| = 1 \}.$
- <u>Observable</u>: a (smooth) function on phase space (i.e. $a \in C^{\infty}_{c}(T^{*}M)$)
- <u>Dynamics (Geodesic Flow)</u>: $g_t : T^*M \to T^*M$ given by $g_t(z, \vec{v}) = (z', \vec{v}')$ from Newton.

Quantum Mechanics

Definition.

- <u>State of motion</u>: a function ψ: M → C up to phase.
 Fact (Schrödinger): given the current state, we know the unique state the system will reach after t units of time.
- <u>Space of all states</u> is $L^2(M, d \operatorname{vol})$.
- Interpretation of ψ : prob. density for finding the particle given by $d\bar{\mu}_{\psi}(z) = \frac{1}{\|\psi\|_{2^{n}}^{2}} |\psi(z)|^{2} d\operatorname{vol}_{M}(z).$
- <u>Observable</u>: operator $Op: L^2(M) \to L^2(M)$. Takes definite value η if the state ψ satisfies $Op \psi = \eta \psi$.
- Energy ⇐⇒ Laplace operator, with (orthonormal) system of eigenstates Δψ_n = −λ_nψ_n.
 Eigenstates are stationary, only linear combinations travel.

Examples of Eigenfunctions

On $M = (\mathbb{R}/\mathbb{Z})^2$, indexed by $k \in \mathbb{Z}^2$: $\psi_k(x) = e^{2\pi i k \cdot x}$ with $\lambda_k = -4\pi^2 \|k\|^2$. Note that $|\psi_k(x)|^2 = 1$.

On the Cardioid billiard (modes 567, 1277):

[A. Bäcker, arXiv:nlin.CD/0106018 & arXiv:nlin.CD/0204061]

Maass waveforms in the non-compact case.

In the example of $M = \Gamma \setminus \mathbb{H}$, assume $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma$ (true w.l.g. if M is non-compact).

• An eigenfunction $\psi \colon M \to \mathbb{R}$ is an Γ -periodic function on \mathbb{H} . Invariance under $z \mapsto z + 1$ gives (Fourier expansion)

$$\psi(x+iy) = \sum_{n \in \mathbb{Z}} W_n(y) e^{2\pi i n x}.$$

Since
$$\Delta_{\mathbb{H}} = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$
,
 $\psi(x + iy) = \sum_{n \neq 0}^{\infty} a_n y^{1/2} K_{ir} \left(2\pi |n|y \right) e^{2\pi i n x}$,

where $\lambda = \frac{1}{4} + r^2$ and $K_{ir}(y)$ is the MacDonald-Bessel function. $a_0 = 0$ since ψ is square-integrable.

Hecke-Maass forms

Assume now that $\Gamma = SL_2(\mathbb{Z})$ (alternatively a *congruence subgroup*).

• We then have *Hecke Operators* $T_n: L^2(M) \rightarrow L^2(M)$

$$T_n\psi(z) = rac{1}{\sqrt{n}} \sum_{\substack{a, d, b (n) \ ad \equiv 1}} \psi\left(rac{az+b}{d}
ight),$$

which commute with each other, with Δ , and with the reflection $T_{-1}\psi(z) = \psi(-\bar{z})$.

• For a joint eigenfunction ψ (a *Hecke-Maass form*) write $T_n\psi = \rho_{\psi}(n)\psi$. Then the Fourier coefficients are given by

 $a_n = a_1 \rho_{\psi}(n).$

Corollary: the joint spectrum is simple.

Remark. A similar theory exists for certain compact quotients. *Remark.* Based on numerical evidence it is expected that the spectrum of Δ on $SL_2(\mathbb{Z}) \setminus \mathbb{H}$ (unlike other $\Gamma \setminus \mathbb{H}$) is already simple, in which case every Maass form would be a Hecke eigenform.

Moreover, the associated L-function

$$L(s;\psi) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} \frac{a_n}{n^s} = a_1 \prod_{p \text{ prime}} \left(1 + \rho_{\psi}(p)p^{-s} - p^{1-2s}\right)^{-1}$$

has good analytic properties, similar to those of the Riemann ζ -function

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p} (1 - p^{-s})^{-1}.$$

 We investigate analytic properties of generalizations of Hecke-Maass eigenforms.

The Semi-Classical Limit

 We know classical mechanics to be an accurate model in some situations, even though quantum mechanics is the underlying theory.

 \Rightarrow Expect the classical model to appear as a *limiting behaviour* of the quantum model.

("Correspondence Principle").

• Natural limit is that of *high energies* (in general, of $\hbar \rightarrow 0$).

Problem 1. What aspects of the classical system can be seen in the asymptotics of λ_n and ψ_n as $\lambda_n \to \infty$?

In particular, what can be said about the associated probability measures $\bar{\mu}_n$?

The Equidistribution Question

Fix an orthonormal basis of eigenfunctions $\{\psi_n\}_{n=1}^{\infty} \subset L^2(M)$ with $\lambda_0 \leq \lambda_1 \cdots$. For each observable $a \in C_c^{\infty}(M)$ (i.e. one such that $a(z, \vec{v}) = a(z)$ independently of \vec{v}) we have:

$$\bar{\mu}_n(a) \stackrel{\text{def}}{=} \int_M a(z) |\psi_n(z)|^2 d \operatorname{vol}_M(z).$$

Theorem. (Schnirel'man-Zelditch-Colin de Verdière, "Quantum Ergodicity") \exists measures μ_n on $X = T^1M$ lifting the $\bar{\mu}_n$ such that:

- 1. Every ("weak-*") limit μ_{∞} of a subsequence of the μ_n is g_t -invariant.
- **2.** $\frac{1}{N+1} \sum_{n=0}^{N} \mu_n \xrightarrow[k \to \infty]{wk^{-*}} \frac{d \operatorname{vol}_X}{\operatorname{vol}(X)}$.
- 3. If the classical system is ergodic (almost every classical orbit is uniformly distributed) then $\mu_{n_k} \xrightarrow[k \to \infty]{wk-*} \xrightarrow[vol(X)]{d \operatorname{vol}_X}$ along a subsequence of density one.

Definition. The measures ν_n on X converge to the measure ν_{∞} in the weak-* topology if for every observable $a \in C_c^{\infty}(X)$ we have $\lim_{n\to\infty} \nu_n(a) = \nu_{\infty}(a)$.

Definition. A g_t -invariant probability measure ν on X is *ergodic* if for every observable a and ν -almost every $x \in X$ we have:

$$\lim_{T \to \infty} \int_0^T a(g_t \cdot x) dt = \int_X a(x) d\nu(x).$$

In particular we call M (or X) *ergodic* if $d \operatorname{vol}_X$ is ergodic.

- Manifolds of negative curvature are g_t -ergodic (E. Hopf, A. Anosov).
- So are some plane billiards (e.g. the Cardioid).
- The flow on the torus is not ergodic (momentum is conserved!) Example: Let $\gamma : [0,T] \to M$ be a closed geodesic. This can be lifted to a map $\tilde{\gamma} = (\gamma, \dot{\gamma}) : [0,T] \to X$, and gives a g_t -invariant and ergodic singular measure $\nu_{\gamma}(a) = \frac{1}{T} \int_0^T a(\tilde{\gamma}(t)) dt$.

Problem 2. What are the possible weak-* limits of $\{\mu_n\}_{n=1}^{\infty}$? ("Quantum Limits on *X*") When is the normalized volume measure the unique Quantum Limit?

- On completely integrable systems (e.g. the torus) there exists sequences of eigenfunctions which scar along every "regular" orbit (Toth-Zelditch).
- Naively, ergodicity would imply equidistribution since uncertainty would limit the localization.
- Numerical evidence indicates in some systems eigenfunctions become enhanced near periodic orbits. This phenomenon has been termed "scarring" by E. Heller.

Conjecture. (*Rudnick-Sarnak, "Quantum Unique Ergodicity"*) on compact manifolds of negative sectional curvature, the normalized volume measure is the unique quantum limit.

The case of Hecke-Maass eigenforms is known as the question of *Arithmetic Quantum Unique Ergodicity.*

Other Problems

• Level spacing statistics. Weyl's law $N(\lambda) \stackrel{\text{def}}{=} \#\{n|\lambda_n \leq \lambda\} = c(M)\lambda^{\dim M/2} + O(\lambda^{\dim M/2-1})$ gives the mean spacing.

$$\frac{\#\left\{\lambda_n \le \lambda \middle| a \le \frac{\lambda_n - \lambda_{n-1}}{\lambda^{\dim M/2}} \le b\right\}}{N(\lambda)} \xrightarrow[\lambda \to \infty]{} \xrightarrow{} ?$$

- Value distribution.
- "Quantum Variance". When $\int_X a = 0$ Feingold-Perez conjecture

$$\lim_{\lambda \to \infty} \frac{1}{N(\lambda)} \sum_{\lambda_n \le \lambda} \left(\mu_n(a) \right)^2 = \int_{-\infty}^{\infty} dt \, \langle a, a \circ g_t \rangle_X \,.$$

- Luo-Sarnak have shown that this fails in the arithmetic case.
- Recent numerical investigations by A. Barnett for an ergodic plane billiard.

Arithmetic Quantum Chaos

M a "congruence" surface, $\{\psi_n\}_{n=1}^{\infty} \subset L^2(M)$ the basis of Hecke-Maass eigenforms with $\lambda_0 = 0 < \lambda_1 \leq \cdots$.

Would like to show $\bar{\mu}_n(a) \to 0$ for $a \perp 1$. It suffices to check this for $a = \psi_k$.

Theorem. ("T. Watson's Formula")

$$\frac{\left(\int_{M} \psi_{k} \psi_{l} \psi_{m} d \operatorname{vol}_{M}\right)^{2}}{\|\psi_{k}\|_{L^{2}}^{2} \|\psi_{l}\|_{L^{2}}^{2} \|\psi_{m}\|_{L^{2}}^{2}} = \star \frac{L(\frac{1}{2}; \psi_{k} \times \psi_{l} \times \psi_{m})}{L(1; \wedge^{2} \psi_{k}) L(1; \wedge^{2} \psi_{l}) L(1; \wedge^{2} \psi_{l})}.$$

 \Rightarrow "subconvexity" bounds toward the Grand Riemann Hypothesis for the triple product L-function would imply Arithmetic Quantum Unique Ergodicity in this case (+rate of equidistribution).

The Indirect Route

Would like to consider more general cases where no such formulas are expected.

- Think of the Hecke operators on $L^2(M)$ as arising from additional symmetries of M, not present for generic Γ .
- Hecke-Maass eigenforms ψ_n are the eigenstates which "respect" the symmetries.
- Analyze ψ_n using the symmetries.

- \Rightarrow Strategy for proving equidistribution (E. Lindenstrauss):
 - 1. <u>Lift</u>: replace the measures $\bar{\mu}_n$ on M with related measures μ_n on a bundle $X \to M$, such that any limit is invariant under a flow $A \circlearrowright X$.
- 2. <u>Additional smoothness</u>: Show that any weak-* limit μ_{∞} of the μ_n is not too singular.
- 3. <u>Measure rigidity</u>: Use results toward the classification of *A*-invariant measures on *X* to conclude that μ_{∞} is the desired "uniform" measure.

When $M = \Gamma \setminus \mathbb{H} \simeq \Gamma \setminus \mathrm{SL}_2(\mathbb{R}) / \mathrm{SO}_2(\mathbb{R})$, $T^1 M \simeq \Gamma \setminus \mathrm{SL}_2(\mathbb{R})$ and the geodesic flow g_t is given by the action of the subgroup $A = \left\{ \begin{pmatrix} e^{t/2} \\ e^{-t/2} \end{pmatrix} \right\}$ on the right.

- The Zelditch-Wolpert version of the Quantum Ergodicity theorem is compatible with the Hecke operators.
- J. Bourgain-Lindenstrauss: every $1 \neq a \in A$ acts on μ_{∞} with *positive entropy*.
- Lindenstrauss: an A-invariant measure on Γ\SL₂(ℝ) satisfying the positive entropy condition (and a recurrence condition) is the SL₂(ℝ)-invariant measure.

Remark. If *M* is compact then it follows that μ_{∞} is indeed the uniform measure. Otherwise we only know that $\mu_{\infty} = c \cdot d \operatorname{vol}_X$ for some constant $0 \le c \le 1$. To control this "escape of mass" a subconvexity bound on $L(\frac{1}{2}; \operatorname{Sym}^2 \psi_n)$ would suffice.

Positive Entropy

We will control concentration on neighbourhood of geodesics.

Note that: $\left\{ x \begin{pmatrix} e^{t/2} \\ e^{-t/2} \end{pmatrix} | |t| \le \tau \right\}$ is a piece of length 2τ of the geodesic through x. Given $\varepsilon, \tau > 0$ we consider the tubular neighbourhood

$$B(\tau,\varepsilon) = \left\{ \left(\begin{array}{cc} 1 \\ u & 1 \end{array} \right) \left(\begin{array}{cc} e^{t/2} \\ e^{-t/2} \end{array} \right) \left(\begin{array}{cc} 1 & v \\ & 1 \end{array} \right) \left| |u|, |v| \le \epsilon, |t| \le \tau \right\}.$$

We need to show: $\exists \kappa > 0$ such that for $\forall x \in X$,

$$\mu_{\infty}\left(xB(\varepsilon,\tau)\right) \leq C\varepsilon^{\kappa} \text{ as } \epsilon \to 0.$$

If X is non-compact the constant should be uniform on compact subsets $\Omega \subset X$. The uniform ("Lebesgue" or "Haar") measure satisfies this with $\kappa = 2$.

The Hecke Correspondence

Alternative view of the Hecke Operators: given a prime p and $x \in X$, we have a subset $C_p(x) \subset X$ of size p + 1 such that:

$$(T_p\psi)(x) = \frac{1}{\sqrt{p}} \sum_{x' \in C_p(x)} \psi(x').$$

- The relation $x \sim_p x' \iff x' \in C_p(x)$ is symmetric, giving a graph structure $G_p = (X, \sim_p)$.
- This is almost a *p* + 1-regular *forest*: *X* is nearly a disjoint union of trees, and *T_p* is the "tree Laplacian".
 Problem: some components are not trees.
- This structure is equivariant w.r.t. the action of $SL_2(\mathbb{R})$ on $X = \Gamma \setminus SL_2(\mathbb{R})$.

We would like to show that $\mu_{\infty}(xB(\varepsilon,\tau))$ is small. Following Rudnick-Sarnak, Bourgain-Lindenstrauss: (p = 2 in the figure)

$$\rho_{\psi}(p)\psi(x'g) = (T_p\psi)(x'g) = \frac{1}{\sqrt{p}} \sum_{x'' \in C_p(x')} \psi(x''g).$$

Summing over $x' \in C_p(x)$ and using $x \in C_p(x')$ one gets:

$$\psi(xg) = \frac{\sqrt{p}\rho_{\psi}(p)}{p+1} \sum_{x' \in C_p(x)} \psi(x'g) - \frac{1}{(p+1)} \sum_{x'' \in \tilde{C}_p(x')} \psi(x''g).$$

Now at least one of the two terms on the RHS must be as large as $\frac{1}{2}|\psi(xg)|$. Using Cauchy-Schwartz and assuming $|\rho_{\psi}(p)| \leq p^{\frac{1}{2}-\delta}$ gives:

$$\frac{C}{p^{1-2\delta}} |\psi(xg)|^2 \le \sum_{x' \in C_p(x) \cup \tilde{C}_p(x)} |\psi(x'g)|^2.$$

Integrating over $g \in B(\varepsilon, \tau)$ gives:

$$\frac{C}{p^{1-2\delta}}\mu_{\infty}\left(xB(\varepsilon,\tau)\right) \leq \sum_{x'\in C_p(x)\cup \tilde{C}_p(x)}\mu_{\infty}\left(x'B(\varepsilon,\tau)\right).$$

Finally, we find a large set of primes $\mathcal{P}(x,\varepsilon)$ such that all the sets $\{x'B(\varepsilon,\tau) \mid p \in \mathcal{P}(x,\varepsilon), x \in C_p(x) \cup \tilde{C}_p(x)\}$ are *disjoint*. Then we have:

$$C\mu_{\infty}(xB(\varepsilon,\tau))\sum_{p\in\mathcal{P}(x,\varepsilon)}\frac{1}{p^{1-2\delta}}\leq 1,$$

and hence:

$$\mu_{\infty}\left(xB(\varepsilon,\tau)\right) \leq C\left(\sum_{p\in\mathcal{P}(x,\varepsilon)}\frac{1}{p^{1-2\delta}}\right)^{-1}$$

Difficult case: there is a closed geodesic nearby. Bourgain-Lindenstrauss: replace $p^{-1+2\delta}$ by $\frac{3}{4}$; good choice of primes can make $\sum_{p \in \mathcal{P}(x,\varepsilon)} 1$ at least $\left(\frac{1}{\varepsilon}\right)^{2/9}$. S-Venkatesh: good choice of correspondence and *all* primes $\leq \left(\frac{1}{\varepsilon}\right)^{\kappa}$. Get much smaller κ but method generalizes.

Higher-rank cases

G s.s. Lie Group	$\operatorname{SL}_n(\mathbb{R})$
K < G max'l cpt. subgp	$\mathrm{SO}_n(\mathbb{R})$
$\Gamma < G$ congruence lattice	$\operatorname{SL}_n(\mathbb{Z})$
$M = \Gamma \backslash G / K$	loc. symm. space
$X = \Gamma \backslash G$	Weyl chamber bundle
ring of invariant differential ops.	includes Δ
A < G max'l split torus	diagonal matrices

Maass forms are now $\psi \in L^2(M)$ which are joint eigenfunctions of the ring of *G*-invariant differential operators (isomorphic to $\mathfrak{z}(\mathfrak{g}_{\mathbb{C}})$). E.g. for $G = SL_2(\mathbb{C})$, K = SU(2), G/K is hyperbolic 3-space. **Theorem 1.** (S-V) Let $\{\psi_n\}_{n=1}^{\infty} \subset L^2(M)$ be a non-degenerate sequence of eigenforms with $\lambda_n \to \infty$. Then there exists distribution μ_n on X lifting $\bar{\mu}_n$ such that every weak-* limit is A-invariant.

Theorem 2. (S-V) Assume n is prime, and $\Gamma < SL_n(\mathbb{R})$ is a congruence lattice associated to a division algebra over \mathbb{Q} , split over \mathbb{R} . Then every regular element $a \in A$ acts on μ_{∞} with positive entropy.

Combined with measure rigidity results of Einsiedler-Katok-Lindenstrauss this shows that the unique non-degenerate quantum limit in that case is normalized Haar measure.