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Random Groups

Why random groups?

• Understanding discrete groups via presentations.

• Trying to get a feel for the “typical” group in some sense.

• Counterexamples.

Models for random groups: add relations “at random” to a given
group.



The Cayley graph Cay(Γ; S)

Let Γ be a group, S ⊂ Γ a finite subset. Decleare (γ1, γ2) ∈ Γ2 to be
an edge iff there exists s ∈ S such that γ1s = γ2. Cay(Γ; S) is:

1. |S|-regular;

2. Connected iff S generates Γ;

3. Undirected iff S is symmetric (meaning s ∈ S implies s−1 ∈ S).

From now on we assume S generates Γ, and is of the form
{
s±1
i

}k

i=1

(with possible repetitions).

Example : Γ = Z, S = {±1}.



Examples :

Γ = Z2, S = {(±1, 0), (0,±1)} Γ = F{a,b}, S =
{
a, a−1, b, b−1

}
• Cay(Γ; S) has a symmetric “S-coloring” . This is Γ-invariant.

• Colored cycles of Cay(Γ; S) are relations (words in S which repre-
sents the trivial element).

Let R be a set of words in S. Call 〈S | R〉 a presentation of Γ if S

generates Γ, R generate the group of relations.



Hyperbolicity (the geometry of Γ)

• “Coarse” geometry: call Γ Gromov hyperbolic if geodesic trian-
gles in Cay(Γ; S) are δ-thin for some δ > 0.

• Independent of the choice of S.

• Example: Free groups (trees): every geodesic triangle is 0-thin.



Property (T) (the geometry of actions of Γ)

• Let Γ act isometrically on (Y, dY ). y ∈ Y is ε-almost invariant if
dY (sy, y) ≤ ε for all s ∈ S.

⇐⇒ E(y) =
1

2|S|
∑
s∈S

‖sy − y‖2
Y is small.

• Kazhdan’s property (T) with Kazhdan constant ε: every unitary
representation of with an ε-almost invariant unit vector has a Γ-
invariant unit vector.

• Example: SLn(Z) for n ≥ 3, but not Fn.

• (Guichardet-Delorme) Γ is Kazhdan (T) iff every isometric action
on a Hilbert space Y has a fixed point.

• (Margulis) Let Γ have property (T). Then {Cay(Γ/N ; S)}NCΓ is
family of expanders.



Models of random groups

Start with Γ = 〈S | R〉, and add relations.

In each case we have a sequence of probability spaces
{(Am, Prm)}∞m=1 and for each α ∈ Am of words Wα in S, giving random
groups:

Γα = 〈S | R ∪Wα〉 .

As usual say P(Γα) holds asymptotically almost surely (a.a.s) if

lim
m→∞

Prm {α ∈ Am | Γα hasP} = 1.



“Density” models

• Choose a parameter 0 ≤ δ ≤ 1

• Set Rm = "all (reduced / cyclically reduced / geodesic) words of lengthm".

• Set Am =
{

all subsets ofRm of size ≈ |Rm|δ
}

.

Theorem (Ollivier) Let Γ be non-elementary hyperbolic. In each case
there exists δc such that:

1. If δ > δc then a.a.s. |Γα| ≤ 2.

2. If δ < δc then a.a.s. Γα is non-elementary hyperbolic.

Proof : “Small cancellation theory” for hyperbolic groups.

• For Γ = Fn the case of finitely many relations (“δ = 0”) is due
to Ol’shankii and Champetier, and the fact that δc = 1

2 is due to
Gromov.



The “graph” model

• Take a graph G = (V, E), let AG =
{

symmetricα : ~E → S
}

.

• If ~p = (~e1, . . . , ~er) is a path set α(~p) = α(~e1) · . . . · α(~er), and

Wα = {α(~c) | ~c a closed path inG} .

• Example : Γ = F{a,b}, G = C4 marked aba−1b−1. Then Γα ' Z2.

Key observation: Let Xα = Cay(Γα; S). Take base vertices u0 ∈ V ,
x0 ∈ Xα. For a path ~p : u0  u in G set

αu0→x0(u) = x0α(~p).

This is a map of decorated graphs αu0→x0 : (G, α) → Xα.

Restricting to a neighbourhood of radius < g
2, we also have a well-

defined map BG
g/2(u) → X = Cay(Γ; S).



Results

For simplicity assume G is d-regular, d ≥ 3, and let g = girth(G).

Theorem 1: (Ollivier, Delzant) Assume that g � log |V | and that Γ is
non-elementary hyperbolic. Then Γα is non-elementary
hyperbolic a.a.s. as |V | → ∞.

Also gives information about the radius of the injectivity of the quo-
tient map Γ� Γα and the maps αu0→x0.

Theorem 2 : (S) Given 2k = |S|, 0 ≤ λ0 < 1 there exists g0 such that if
g(G) ≥ g0 and λ2(G) ≤ λ2

0 then for some a, b depending
on λ0, k, d

Pr{Γα has Kazhdan (T)} ≥ 1− ae−b|V |.

Here λ2(G) = max
{
λ2

i | λi 6= ±1 is an eigenvalue ofG
}

.



Remarks :

1. Γα = 〈S | R ∪Wα〉 is a quotient of 〈S | Wα〉 ⇒ w.l.g. Γ is free, so
X = Cay(Γ; S) is a 2k-regular tree.

2. Theorem 1 in fact uses a graph G′ constructed from G by “blowing
up” edges. Theorem 2 still holds in that context.

3. The construction seems to need expanders of large girth, i.e. the
Ramanujan graphs of L-P-S.

4. Iterating the construction using larger and larger expanders we
can form a limit group. With positive probability the Cayley graph
of this “wild” group cannot be embedded in Hilbert space with
bounded distortion.



Proof of Theorem 2

Averaging on G

• µn
G(u → u′) - Transition probability for n steps of the standard

random walk on G. E.g.:

µG(u → u′) = µ1
G(u → u′) =

{
1
d

0

(u, u′) ∈ E

(u, u′) /∈ E
.

• Let f : V → Y be a vector-valued function. Its “local averages”
are defined by:

(Aµn
G
f )(u) =

∑
u′

µn
G(u → u′)f (u′).

• Spectrum of G = Spectrum of AµG
. λ2(G) controls convergence

of An
µ2

G
f to the constant function.



• “Proof”: Use energy (variance):

Eµn
G
(f ) =

1

2|V |
∑

u

∑
u′

µn
G(u → u′) ‖f (u)− f (u′)‖2

Y

=
〈(

I − An
µG

)
f, f

〉
• Expanding f in an eigenbasis we see:

Eµ2n
G

(f ) ≤ 1

1− λ2(G)
Eµ2

G
(f )

(independently of n!)

• Geometric fact: if g � n, then for µ4n
G (u → ·)-most u′,∣∣µ4n

G (u → u′)− µ4n+2
G (u → u′)

∣∣ = o
(
µ4n

G (u → u′)
)

• ⇒ “Smoothing effect” of Aµ:

Eµ2
G
(Aµ2n

G
f ) = Eµ4n

G
(f )− Eµ4n+2

G
(f )

= on(1)Eµ4n
G

(f ) + on(1)Eµ2
G
(f ) = on(1)Eµ2

G
(f )



Averaging on X

Representation of Γα on Y ⇐⇒ Γ acts on Y by isometries, Wα acting
trivially. µ2l

X(x → x′) std. rw. on X.

• To each y ∈ Y associate fy(γ) = γy (a Γ-equivariant map f : X →
Y ).

• Note that x 7→
∑

x′ µ
2l
X(x → x′) ‖f (x)− f (x′)‖2

Y is Γ-invariant. Set

Eµ2l
X
(f ) =

1

2

∑
x∈Γ\X

∑
x′

µ2l
X(x → x′) ‖f (x)− f (x′)‖2

Y .

Then y almost-invariant ⇐⇒ EµX
(f ) small.

• We need to find y ∈ Y , i.e. f , s.t. EµX
(f ) = 0. Idea: Fix r < 1.

Given f , find l for which

Eµ2
X
(Aµ2l

X
f ) ≤ rEµ2

X
(f ).



Proof of Theorem 2

Prop. 1: (Geometry) There exist cl, dl −−−→
l→∞

0 such that for every Γ-

space Y and every equivariant f : X → Y ,

Eµ2
X
(Aµ2l

X
f ) ≤ clEµ2l

X
(f ) + dlEµ2

X
(f ).

Prop. 2: (Spectral Gap) Assume 1
2g(G) > 2n. Then a.a.s. as |V | →

∞, for every Γα-space Y and every equivariant f : X → Y ,
there exists n

6 ≤ l ≤ n, such that:

Eµ2l
X
(f ) ≤ 10.5

1− λ2(G)
Eµ2

X
(f ).

Proof of Thm: Choose n = 6l0 large enough such that r = 10.5
1−λ2

0
cl0 +

dl0 < 1, and let g(G) > 4n. Given Y and fj ∈ BΓ(X, Y ) we
can set fj+1 = Aµ2l

X
fj with the right l to get:

Eµ2
X
(fj+1) ≤ rEµ2

X
(f ).



Proposition 2

Recall the maps αu0→x0 : (G, α) → Xα. Since every f : BΓ(X, Y )

decends to Xα we can consider f ◦ αu0→x0 : G → V . By direct com-
putation

Eµ2n
G

(f ◦ αu0→x0) = Eµ̄2n
X,α

(f )

with the “effective walk”

µ̄2n
X,α(x → x′) =

1

|V |
∑

αp0→x(~p) = x′

|~p| = 2n

µ2n
G (~p)

and the sum is over all paths ~p of length 2n connecting vertices u, u′

such that αu→x(~p) = u′.

• Since 1
2g(G) > 2n, αu→x(~p) is a well-defined member of X.



• Warning: µ̄2n
X,α 6= µ2n

X ! In fact, µ̄2n
X,α ≈ µ

2n·k−1
k

X .

For any x, x′ ∈ X we now consider µ̄2n
X,α as a function of α. From the

radial symmetry it is clear that we can write:

Eµ̄2n
X,α(x → x′) =

∑
l

plµ
2l
X(x → x′),

• If 1
2g(G) > 2n we can take l ≥ n

6 without much error.

• Observation: changing a single α(e) makes a very small change
to µ̄2n

X,α. Also, AG is the product measure space.



• Hence (concentration of measure and the union bound) all the
µ̄2n

X,α(x → x′) are close to their expectation values with high prob-
ability. If that happens then for every Y and f as above,

1

2

∑
n
6≤l

plEµ2l
X
(f ) ≤ 1

2
Eµ̄2n

X,α(x → x′) ≤ Eµ̄2n
X,α

(f ).

By lifting f to G we know

Eµ̄2n
X,α

(f ) ≤ 1

1− λ2(G)
Eµ̄2

X,α
(f ),

and under the “high probability” umberlla we can also add
Eµ̄2

X,α
(f ) ≤ Eµ2

X
(f ), concluding that∑

n
6≤l plEµ2l

X
(f )∑

n
6≤l pl

≤ 2∑
n
6≤l pl

· 1

1− λ2(G)
Eµ2

X
(f ),

Finally, the smallest Eµ2l
X
(f ) must be at least their average.



Proposition 1

µ random walk on X, Y a CAT(0) space, f : X → Y Γ-equivariant. ν

a Γ-invariant measure on X. Hn denotes Aµn here.

Eµ(Hnf ) ≤ 1

2

∫
X̄

dν̄(x)

∫
X

[
dµn+1(x → x′)− dµn(x → x′)

]
d2

Y (Hnf (x), f(x′)),

and

1

2

∫
X̄

dν̄(x)

∫
X

dµn(x → x′)d2
Y (Hnf (x), f(x′)) ≤ Eµn(f ).

Use with µ = µ2
X. Since X is a tree, µ2n+2

X (x → x′) − µ2n
X (x → x′) is

small.
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