Gromov's Random Groups have Property (T)

Lior Silberman[†]

March 8th, 2004

[†]Department of Mathematics, Princeton University

Homepage: http://www.math.princeton.edu/~lior

Random Groups

Why random groups?

- Understanding discrete groups via presentations.
- Trying to get a feel for the "typical" group in some sense.
- Counterexamples.

Models for random groups: add relations "at random" to a given group.

The Cayley graph $Cay(\Gamma; S)$

Let Γ be a group, $S \subset \Gamma$ a finite subset. Decleare $(\gamma_1, \gamma_2) \in \Gamma^2$ to be an edge iff there exists $s \in S$ such that $\gamma_1 s = \gamma_2$. Cay $(\Gamma; S)$ is:

- 1. |S|-regular;
- **2.** Connected iff S generates Γ ;
- 3. Undirected iff S is symmetric (meaning $s \in S$ implies $s^{-1} \in S$).

From now on we assume *S* generates Γ , and is of the form $\{s_i^{\pm 1}\}_{i=1}^k$ (with possible repetitions).

Examples:

- $Cay(\Gamma; S)$ has a symmetric "S-coloring". This is Γ -invariant.
- Colored cycles of $Cay(\Gamma; S)$ are *relations* (words in S which represents the trivial element).

Let *R* be a set of words in *S*. Call $\langle S | R \rangle$ a *presentation* of Γ if *S* generates Γ , *R* generate the group of relations.

Hyperbolicity (the geometry of Γ)

- "Coarse" geometry: call Γ *Gromov hyperbolic* if geodesic triangles in Cay(Γ ; S) are δ -thin for some $\delta > 0$.
- Independent of the choice of S.
- Example: Free groups (trees): every geodesic triangle is 0-thin.

Property (T) (the geometry of actions of Γ **)**

• Let Γ act isometrically on (Y, d_Y) . $y \in Y$ is ε -almost invariant if $d_Y(sy, y) \leq \varepsilon$ for all $s \in S$.

$$\iff E(y) = \frac{1}{2|S|} \sum_{s \in S} \|sy - y\|_Y^2 \text{ is small}.$$

- Kazhdan's property (T) with Kazhdan constant ε: every unitary representation of with an ε-almost invariant unit vector has a Γinvariant unit vector.
- **Example:** $SL_n(\mathbb{Z})$ for $n \geq 3$, but not F_n .
- (Guichardet-Delorme) Γ is Kazhdan (T) iff every isometric action on a Hilbert space Y has a fixed point.
- (Margulis) Let Γ have property (T). Then $\{Cay(\Gamma/N; S)\}_{N \triangleleft \Gamma}$ is family of expanders.

Models of random groups

Start with $\Gamma = \langle S \mid R \rangle$, and add relations.

In each case we have a sequence of probability spaces $\{(\mathcal{A}_m, \Pr_m)\}_{m=1}^{\infty}$ and for each $\alpha \in \mathcal{A}_m$ of words W_{α} in *S*, giving random groups:

 $\Gamma_{\alpha} = \langle S \mid R \cup W_{\alpha} \rangle \,.$

As usual say $\mathcal{P}(\Gamma_{\alpha})$ holds asymptotically almost surely (a.a.s) if

 $\lim_{m\to\infty} \Pr_m \left\{ \alpha \in \mathcal{A}_m \mid \Gamma_\alpha \text{ has } \mathcal{P} \right\} = 1.$

"Density" models

- Choose a parameter $0 \le \delta \le 1$
- Set R_m = "all (reduced / cyclically reduced / geodesic) words of length m".
- Set $\mathcal{A}_m = \{ \text{all subsets of } R_m \text{ of size } \approx |R_m|^{\delta} \}.$

Theorem (Ollivier) Let Γ be non-elementary hyperbolic. In each case there exists δ_c such that:

- 1. If $\delta > \delta_c$ then a.a.s. $|\Gamma_{\alpha}| \leq 2$.
- **2.** If $\delta < \delta_c$ then a.a.s. Γ_{α} is non-elementary hyperbolic.

Proof: "Small cancellation theory" for hyperbolic groups.

• For $\Gamma = F_n$ the case of finitely many relations (" $\delta = 0$ ") is due to Ol'shankii and Champetier, and the fact that $\delta_c = \frac{1}{2}$ is due to Gromov.

The "graph" model

• Take a graph G = (V, E), let $\mathcal{A}_G = \{symmetric \ \alpha : \vec{E} \to S \}$.

• If $\vec{p} = (\vec{e}_1, \dots, \vec{e}_r)$ is a path set $\alpha(\vec{p}) = \alpha(\vec{e}_1) \cdot \dots \cdot \alpha(\vec{e}_r)$, and $W_{\alpha} = \{\alpha(\vec{c}) \mid \vec{c} \text{ a closed path in } G\}.$

• Example: $\Gamma = F_{\{a,b\}}$, $G = C_4$ marked $aba^{-1}b^{-1}$. Then $\Gamma_{\alpha} \simeq \mathbb{Z}^2$.

Key observation: Let $X_{\alpha} = \text{Cay}(\Gamma_{\alpha}; S)$. Take base vertices $u_0 \in V$, $x_0 \in X_{\alpha}$. For a path $\vec{p} : u_0 \rightsquigarrow u$ in *G* set

 $\alpha_{u_0 \to x_0}(u) = x_0 \alpha(\vec{p}).$

This is a map of *decorated graphs* $\alpha_{u_0 \to x_0}$: $(G, \alpha) \to X_{\alpha}$.

Restricting to a neighbourhood of radius $< \frac{g}{2}$, we also have a welldefined map $B_{g/2}^G(u) \to X = \operatorname{Cay}(\Gamma; S)$.

Results

For simplicity assume G is d-regular, $d \ge 3$, and let g = girth(G).

Theorem 1: (Ollivier, Delzant) Assume that $g \gg \log |V|$ and that Γ is non-elementary hyperbolic. Then Γ_{α} is non-elementary hyperbolic a.a.s. as $|V| \to \infty$.

Also gives information about the radius of the injectivity of the quotient map $\Gamma \twoheadrightarrow \Gamma_{\alpha}$ and the maps $\alpha_{u_0 \to x_0}$.

Theorem 2: (S) Given 2k = |S|, $0 \le \lambda_0 < 1$ there exists g_0 such that if $g(G) \ge g_0$ and $\lambda^2(G) \le \lambda_0^2$ then for some a, b depending on λ_0, k, d

 $\Pr{\{\Gamma_{\alpha} \text{ has Kazhdan (T)}\}} \ge 1 - ae^{-b|V|}.$

Here $\lambda^2(G) = \max \{\lambda_i^2 \mid \lambda_i \neq \pm 1 \text{ is an eigenvalue of } G\}.$

Remarks:

- 1. $\Gamma_{\alpha} = \langle S | R \cup W_{\alpha} \rangle$ is a quotient of $\langle S | W_{\alpha} \rangle \Rightarrow$ w.l.g. Γ is free, so $X = \text{Cay}(\Gamma; S)$ is a 2k-regular tree.
- 2. Theorem 1 in fact uses a graph G' constructed from G by "blowing up" edges. Theorem 2 still holds in that context.
- 3. The construction seems to need expanders of large girth, i.e. the Ramanujan graphs of L-P-S.
- 4. Iterating the construction using larger and larger expanders we can form a limit group. With positive probability the Cayley graph of this "wild" group cannot be embedded in Hilbert space with bounded distortion.

Proof of Theorem 2

Averaging on G

• $\mu_G^n(u \rightarrow u')$ - Transition probability for *n* steps of the standard random walk on *G*. E.g.:

$$\mu_G(u \to u') = \mu_G^1(u \to u') = \begin{cases} \frac{1}{d} & (u, u') \in E\\ 0 & (u, u') \notin E \end{cases}.$$

• Let $f: V \to Y$ be a vector-valued function. Its "local averages" are defined by:

$$(A_{\mu_G^n}f)(u) = \sum_{u'} \mu_G^n(u
ightarrow u')f(u').$$

• Spectrum of G = Spectrum of A_{μ_G} . $\lambda^2(G)$ controls convergence of $A_{\mu_G}^n f$ to the constant function.

• "Proof": Use energy (variance):

$$E_{\mu_{G}^{n}}(f) = \frac{1}{2|V|} \sum_{u} \sum_{u'} \mu_{G}^{n}(u \to u') \|f(u) - f(u')\|_{Y}^{2}$$

= $\langle \left(I - A_{\mu_{G}}^{n}\right) f, f \rangle$

• Expanding f in an eigenbasis we see:

$$E_{\mu_G^{2n}}(f) \leq \frac{1}{1-\lambda^2(G)} E_{\mu_G^2}(f)$$

(independently of *n*!)

• Geometric fact: if $g \gg n$, then for $\mu_G^{4n}(u \to \cdot)$ -most u',

$$\left|\mu_G^{4n}(u \to u') - \mu_G^{4n+2}(u \to u')\right| = o\left(\mu_G^{4n}(u \to u')\right)$$

• \Rightarrow "Smoothing effect" of A_{μ} :

$$\begin{split} E_{\mu_G^2}(A_{\mu_G^{2n}}f) &= E_{\mu_G^{4n}}(f) - E_{\mu_G^{4n+2}}(f) \\ &= o_n(1)E_{\mu_G^{4n}}(f) + o_n(1)E_{\mu_G^2}(f) = o_n(1)E_{\mu_G^2}(f) \end{split}$$

Averaging on X

Representation of Γ_{α} on $Y \iff \Gamma$ acts on Y by isometries, W_{α} acting trivially. $\mu_X^{2l}(x \to x')$ std. rw. on X.

- To each $y \in Y$ associate $f_y(\gamma) = \gamma y$ (a Γ -equivariant map $f \colon X \to Y$).
- Note that $x \mapsto \sum_{x'} \mu_X^{2l}(x \to x') \|f(x) f(x')\|_Y^2$ is Γ -invariant. Set $E_{\mu_X^{2l}}(f) = \frac{1}{2} \sum_{x \in \Gamma \setminus X} \sum_{x'} \mu_X^{2l}(x \to x') \|f(x) - f(x')\|_Y^2.$

Then y almost-invariant $\iff E_{\mu_X}(f)$ small.

• We need to find $y \in Y$, i.e. f, s.t. $E_{\mu_X}(f) = 0$. Idea: Fix r < 1. Given f, find l for which

$$E_{\mu_X^2}(A_{\mu_X^{2l}}f) \le r E_{\mu_X^2}(f).$$

Proof of Theorem 2

Prop. 1: (Geometry) There exist $c_l, d_l \xrightarrow[l \to \infty]{} 0$ such that for every Γ -space Y and every equivariant $f: X \to Y$,

 $E_{\mu_X^2}(A_{\mu_X^{2l}}f) \le c_l E_{\mu_X^{2l}}(f) + d_l E_{\mu_X^2}(f).$

Prop. 2: (Spectral Gap) Assume $\frac{1}{2}g(G) > 2n$. Then a.a.s. as $|V| \rightarrow \infty$, for every Γ_{α} -space Y and every equivariant $f: X \rightarrow Y$, there exists $\frac{n}{6} \leq l \leq n$, such that:

$$E_{\mu_X^{2l}}(f) \leq \frac{10.5}{1 - \lambda^2(G)} E_{\mu_X^2}(f).$$

Proof of Thm: Choose $n = 6l_0$ large enough such that $r = \frac{10.5}{1 - \lambda_0^2}c_{l_0} + d_{l_0} < 1$, and let g(G) > 4n. Given Y and $f_j \in B^{\Gamma}(X, Y)$ we can set $f_{j+1} = A_{\mu_X^{2l}}f_j$ with the right l to get:

 $E_{\mu_X^2}(f_{j+1}) \le r E_{\mu_X^2}(f)$

Proposition 2

Recall the maps $\alpha_{u_0 \to x_0} \colon (G, \alpha) \to X_{\alpha}$. Since every $f \colon B^{\Gamma}(X, Y)$ decends to X_{α} we can consider $f \circ \alpha_{u_0 \to x_0} \colon G \to V$. By direct computation

$$E_{\mu_G^{2n}}(f \circ \alpha_{u_0 \to x_0}) = E_{\bar{\mu}_{X,\alpha}^{2n}}(f)$$

with the "effective walk"

$$\bar{\mu}_{X,\alpha}^{2n}(x \to x') = \frac{1}{|V|} \sum_{\substack{\alpha_{p_0 \to x}(\vec{p}) = x' \\ |\vec{p}| = 2n}} \mu_G^{2n}(\vec{p})$$

and the sum is over all paths \vec{p} of length 2n connecting vertices u, u' such that $\alpha_{u \to x}(\vec{p}) = u'$.

• Since $\frac{1}{2}g(G) > 2n$, $\alpha_{u \to x}(\vec{p})$ is a well-defined member of X.

• Warning: $\bar{\mu}_{X,\alpha}^{2n} \neq \mu_X^{2n}$! In fact, $\bar{\mu}_{X,\alpha}^{2n} \approx \mu_X^{2n \cdot \frac{k-1}{k}}$.

For any $x, x' \in X$ we now consider $\overline{\mu}_{X,\alpha}^{2n}$ as a function of α . From the radial symmetry it is clear that we can write:

$$\mathbb{E}\bar{\mu}_{X,\alpha}^{2n}(x \to x') = \sum_{l} p_{l}\mu_{X}^{2l}(x \to x'),$$

• If $\frac{1}{2}g(G) > 2n$ we can take $l \ge \frac{n}{6}$ without much error.

• Observation: changing a single $\alpha(e)$ makes a very small change to $\bar{\mu}_{X,\alpha}^{2n}$. Also, \mathcal{A}_G is the product measure space.

• Hence (concentration of measure and the union bound) all the $\bar{\mu}_{X,\alpha}^{2n}(x \to x')$ are close to their expectation values with high probability. If that happens then for every Y and f as above,

$$\frac{1}{2} \sum_{\frac{n}{6} \le l} p_l E_{\mu_X^{2l}}(f) \le \frac{1}{2} \mathbb{E} \bar{\mu}_{X,\alpha}^{2n}(x \to x') \le E_{\bar{\mu}_{X,\alpha}^{2n}}(f).$$

By lifting f to G we know

$$E_{\bar{\mu}^{2n}_{X,\alpha}}(f) \leq \frac{1}{1 - \lambda^2(G)} E_{\bar{\mu}^2_{X,\alpha}}(f),$$

and under the "high probability" umberlla we can also add $E_{\bar{\mu}^2_{X,o}}(f) \leq E_{\mu^2_X}(f)$, concluding that

$$\frac{\sum_{\frac{n}{6} \le l} p_l E_{\mu_X^{2l}}(f)}{\sum_{\frac{n}{6} \le l} p_l} \le \frac{2}{\sum_{\frac{n}{6} \le l} p_l} \cdot \frac{1}{1 - \lambda^2(G)} E_{\mu_X^2}(f),$$

Finally, the smallest $E_{\mu \psi}(f)$ must be at least their average.

Proposition 1

 μ random walk on X, Y a CAT(0) space, $f: X \to Y \Gamma$ -equivariant. ν a Γ -invariant measure on X. H_n denotes A_{μ^n} here.

$$E_{\mu}(H_n f) \le \frac{1}{2} \int_{\bar{X}} d\bar{\nu}(x) \int_{X} \left[d\mu^{n+1}(x \to x') - d\mu^n(x \to x') \right] d_Y^2(H_n f(x), f(x')),$$

and

$$\frac{1}{2} \int_{\bar{X}} d\bar{\nu}(x) \int_{X} d\mu^{n}(x \to x') d_{Y}^{2}(H_{n}f(x), f(x')) \leq E_{\mu^{n}}(f).$$

Use with $\mu = \mu_X^2$. Since X is a tree, $\mu_X^{2n+2}(x \to x') - \mu_X^{2n}(x \to x')$ is small.