Lior Silberman's Math 535, Problem Set 5: Lie Groups

Constructions on manifolds

The first two exercises are highly recommended if you are interested in algebraic geometry or in differential geometry:

- 1. (View of the tangent space) Let M be a smooth manifold, $C^{\infty}(M)$ its algebra of smooth functions (multiplication defined pointwise). For $p \in M$ let $I_p = \{f \in C^{\infty}(M) \mid f(p) = 0\}$ be the associated maximal ideal. Recall that we set $T_p^*M = I_p/I_p^2$ and $T_pM = \left(T_p^*M\right)^*$.
 - (a) Let G_p be the set of pairs (f,U) where p∈ U ⊂ M is open and f∈ C[∞](U). Show that (f,U) ~ (g,V) ⇔ ∃W: f |_W = g |_W (here W ⊂ U ∩ V is an open set containing p) is an equivalence relation, and endow G_p def G_p/~ with a natural structure as an ℝ-algebra.
 (b) Let C[∞](M)_{I_p} be the *localization* of C[∞](M) at the prime ideal I_p. Show that associating to
 - (b) Let $C^{\infty}(M)_{I_p}$ be the *localization* of $C^{\infty}(M)$ at the prime ideal I_p . Show that associating to $f \in C^{\infty}(M)$ the equivalence class of $(f,M) \in G_p$ is an algebra homomorphism $C^{\infty}(M) \to \mathcal{G}_p$ inducing an isomorphism $C^{\infty}(M)_{I_p} \simeq \mathcal{G}_p$.
 - (c) Conclude that restriction of maps induces an isomorphism $I_p(M)/I_p^2(M) \simeq I_p(U)/I_p^2(U)$ for any open U containing p.
 - (c) A *derivation* at p is an \mathbb{R} -linear map $X : C^{\infty}(M) \to \mathbb{R}$ such that $X(fg) = (Xf) \cdot g(p) + f(p) \cdot (Xg)$. Write \tilde{T}_pM for the set of derivations at p. Show that \tilde{T}_pM is an \mathbb{R} -vector space.
 - (d) Let $X \in \tilde{T}_p M$. Show that X(f) = 0 if $f \in I_p^2$, so that the map $X \mapsto X \upharpoonright_{I_p/I_p^2}$ gives a linear map $\tilde{T}_p M \to T_p M$.
 - (e) Conversely, let $v \in T_pM$. Show that setting $X_v f \stackrel{\text{def}}{=} v(f f(p))$ gives $X_v \in \tilde{T}_pM$ and that the map $v \mapsto X_v$ is inverse to the map of (d).
- 2. Let M,N be smooth manifolds and let $\varphi: M \to N$ be a smooth map. Fix $p \in M$.
 - (a) Show that mapping $f \in I_{\varphi(p)}N$ to $f \circ \varphi \in I_p(M)$ induces a linear map $(d\varphi_p)^* : T_{\varphi(p)}^*N \to T_p^*M$.
 - (b) For $X \in \tilde{T}_p M$ and $f \in C^{\infty}(N)$ set $d\varphi_p(X) f \stackrel{\text{def}}{=} X (f \circ \varphi)$. Show that $d\varphi_p(X) \in \tilde{T}_p N$ and that $d\varphi_p \in \operatorname{Hom}_{\mathbb{R}} \left(\tilde{T}_p M, \tilde{T}_p N \right)$.
 - (c) Show that, under the isomorphism T_p and \tilde{T}_p from problem 1, the maps $d\varphi_p$ and $(d\varphi_p)^*$ are indeed dual.
 - (d) Show that the map $\varphi \mapsto d\varphi$ satisfies the *chain rule*: if $\psi \colon L \to M$ is smooth and $p \in L$ then $d(\varphi \circ \psi)_p = d\varphi_{\psi(p)} \circ d\psi_p$.
 - (e) Show that $d\varphi_p, d\varphi_p^*$ extend to bundle maps $d\varphi \colon TM \to TN$, $d\varphi^* \colon T^*N \to T^*M$.
- 3. Let (M, \mathcal{F}) be a σ -compact topological space equipped with a sheaf \mathcal{F} . Suppose that every $x \in M$ has a neighbourhood U so that $(U, \mathcal{F} \upharpoonright_U)$ is isomorphic to the sheaf of smooth functions on an open set in some \mathbb{R}^n . Show that there is a unique manifold structure on M compatible with the sheaf \mathcal{F} .

The following two exercises are merely a technical verification.

DEFINITION. Let $\Omega \subset \mathbb{R}^n$ be a domain, V a topological vector space. For $1 \le i \le n$, $f: \Omega \to V$ and $x \in \mathbb{R}^n$ set

$$(\partial_i f)(x) = \lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h}$$

(e_i is the unit vector in direction i) provided the limit exists. Write $C^0(\Omega; V) = C(\Omega; V)$ for the space of continuous functions $\Omega \to V$ and then let

$$C^{k+1}(\Omega; V) = \left\{ f \in C^{k}(\Omega; V) \mid \forall i : \partial_{i} f \in C^{k}(\Omega; V) \right\}$$
$$C^{\infty}(\Omega; V) = \bigcap_{k=0}^{\infty} C^{k}(\Omega; V).$$

Finally, if *V* is a normed space and $K \subset \Omega$ is compact we set $||f||_{C^k,K} = \sup\{||\partial^{\alpha} f(x)|| \mid x \in K, |\alpha| \le k\}$.

- 3. Show that this definition is independent of the choice of co-ordinates: if $\varphi \colon \Omega \to \Omega'$ is a diffeomorphism then $f \mapsto f \circ \varphi$ is a bijection $C^k(\Omega'; V) \to C^k(\Omega; V)$. In particular, $f \in C^1(\Omega; V)$ has directional derivatives in all directions.
- 4. Let M be a smooth manifold. Define the spaces $C^k(M;V)$ and $C^{\infty}(M;V)$. Show that when Mis compact the topology of $C^k(M;V)$ is determined by a norm such that $||f||_{C^kM}<\infty$ for all $f \in C^k(M;V)$.

Representation Theory

Fix a Lie group G and a representation $(\pi, V) \in \text{Rep}(G)$.

- 5. Call $v \in V$ smooth if the orbit function $g \mapsto \pi(g)v$ is a smooth function $G \to V$ in the sense of problem 4. Write V^{∞} for the set of smooth vectors in V.
 - (a) Show that V^{∞} is a *G*-invariant subspace of *V*.
 - (b) Show that V^{∞} is *dense* in V (hint: revisit arguments used in the proof of the Peter-Weyl Theorem).
 - (c) Suppose V is finite dimensional. Show that every vector in V is smooth (hint: π : $G \rightarrow$ GL(V) is a continuous homomorphism of Lie groups).
- 6. For $X \in \mathfrak{g}$ and $\underline{v} \in V^{\infty}$ set $\pi(X)v = \frac{d}{dt} \upharpoonright_{t=0} \pi\left(e^{tX}\right)\underline{v}$.

 (a) Show that this is *well-defined* (that the derivative above exists) and that $\pi(X)v \in V^{\infty}$. In fact, show that $\pi(X): V^{\infty} \to V^{\infty}$ is linear.
 - (b) (Compatibility) Show that $\pi(g)\pi(X)\pi(g^{-1}) = \pi(\mathrm{Ad}_g X)$ for all $g \in G$.
 - (c) Show that $X \mapsto \pi(X)$ is a linear map $\mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(V^{\infty})$.
 - (d) Show that we obtained a Lie algebra representation: $\pi([X,Y]) = \pi(X)\pi(Y) \pi(Y)\pi(X) =$ $[\pi(X), \pi(Y)]$. Here, the first commutator is the one in \mathfrak{g} , the second the one of $\operatorname{End}_{\mathbb{C}}(V^{\infty})$.

Structure theory

7. Show that exp: $2\mathbb{R} \to SL_{\nvDash}(\mathbb{R})$ is not surjective.

Let G be a lie group. Show that the connected component G° (see PS1 problem 1) is open. Conclude that the component group $\pi_0(G)$ is discrete.