Lior Silberman's Math 535, Problem Set 3: Representation Theory

Basic constructions

1. In each case give a precise definition and show that the reuslt is a continuous representation of the appropriate groups. In all cases $(\pi, V) \in \operatorname{Rep}(G)$.
(a) $H \subset G$ a subgroup, $\operatorname{Res}_{H}^{G} \pi$ the restriction of π to H (still acting on V).
(b) $W \subset V$ a closed invariant subspace, $\pi \upharpoonright_{W}$ the restriction of π to W (still a representation of G).
(c) $W \subset V$ a closed invariant subspace, $\bar{\pi}$ the representation of G on V / W.
(d) The representation $\pi \oplus \sigma$ of G on $V \oplus W$ where $(\sigma, W) \in \operatorname{Rep}(G)$ also.
2. Consider the representation $\check{\pi}$ of G on V^{\prime} where $\check{\pi}(g) \varphi=\varphi \circ \pi\left(g^{-1}\right)$.
(a) Show that $\check{\pi}(g): V^{\prime} \rightarrow V^{\prime}$ is linear and that $\check{\pi}(g h)=\check{\pi}(g) \check{\pi}(h)$.
(b) Show that $\check{\pi}$: $G \times V^{\prime} \rightarrow V^{\prime}$ is continuous where V^{\prime} is equipped with the weak-* topology (the locally convex topology determined by the seminorms $|\varphi|_{\underline{v}}=|\varphi(\underline{v})|$ where $\underline{v} \in V$
(c) Show that $\check{\pi}: G \times V^{\prime} \rightarrow V^{\prime}$ is continuous where V^{\prime} is equipped with the strong topology (the locally convex topology determined by the seminorms $|\varphi|_{E}=\sup _{\underline{v} \in E}|\varphi(\underline{v})|$ where E ranges over the bounded subsets of V).
RMK If V is a Banach space, the strong topology on V^{\prime} is exactly the norm topology with respect to the dual norm.
3. Let $(\sigma, W) \in \operatorname{Rep}(G)$
(a) Show that the natural action $\pi \boxtimes \sigma$ of $G \times H$ on the algebraic tensor product $V \otimes W$ defines an action by linear maps.
(b) Show that this action is a continuous representation if V, W are finite dimensional.

Constructions and Characters

Let $(\pi, V),(\sigma, W) \in \operatorname{Rep}(G)$ be finite-dimensional with characters $\chi_{\pi}, \chi_{\sigma}$..
4. We compute some characters.
(a) Compute the characters of $\pi \oplus \sigma, \pi \otimes \sigma$ in terms of $\chi_{\pi}, \chi_{\sigma}$.
(b) Let $U \subset V$ be G-invariant, and let $\tau(g)=\pi(g) \upharpoonright_{U}$. Show that $\chi_{V / U}=\chi_{\pi}-\chi_{\tau}$.
(c) Suppose instead that σ was a representation of a group H and compute the character of $\pi \boxtimes \sigma$ as a function on $G \times H$.
5. (Symmetric and antisymmetric tensor powers)
(a) For $k \geq 2$ show that $\operatorname{Sym}^{k} V, \bigwedge^{k} V$ are G-invariant subspaces of $V^{\otimes k}$.

DEF Write $\operatorname{Sym}^{k} \pi, \Lambda^{k} \pi$ for the resulting representations.
(b) Find the character of $\operatorname{Sym}^{k} \pi$

Examples of characters

6. Let G be a finite group and let X be a finite G-set.
(a) Show that setting $(\pi(g) f)(x)=f\left(g^{-1} \cdot x\right)$ defines a linear representation of G on $L^{2}(X)$ (counting measure).
(b) Show that $\chi_{\pi}(g)=\# \operatorname{Fix}(g)$.
7. In the context of problem 6 let $G=S_{n}$ act on $[n]=\{1, \ldots, n\}$.
(a) Show that $\pi \simeq \mathbb{1} \oplus V$ where $\mathbb{1}$ is the trivial representation on the constant vectors and V is the orthogonal complement.
(b) Compute the character χ of the representation on V, verify that $\langle\chi, \chi\rangle_{L^{2}\left(S_{n}\right)}=1$ and conclude that χ is irreducible.
(c) Use $L^{2}(G) \simeq \bigoplus_{\pi \in \hat{G}} \pi \boxtimes \check{\pi}$ to show that $\widehat{S_{3}}=\{1, \operatorname{sgn}, V\}$ (hint: dimension count).
(d) Decompose the representation arising from the action of S_{n} on the set $[n]^{2}$ into irreducibles, and connect it to problem 5.

Example: profinite groups

8. A partially ordered set is a pair (P, \leq) where P is a set and \leq is a transitive reflexive relation (but pairs of elements need not be comparable). A directed set is a partially ordered set in which for any $\alpha, \beta \in P$ there if $\gamma \in P$ with $\alpha, \beta \leq \gamma$.
(a) Show that the natural numbers with the usual order form a directed set.
(b) Let X be a topological space and let $x \in X$. Show that the set of neighbourhoods of X ordered by reverse inclusion ($U \leq V$ if $V \subset U$) is directed.
(c) Let G be a group. Show that the set of finite index subgroups of G ordered by reverse inclusion is directed.
(d) We can view a directed set as a category where for every $\alpha, \beta \operatorname{Mor}(\alpha, \beta)$ has a unique element if $\alpha \leq \beta$ and is empty otherwise. Show that this is indeed a category (every element has an identity morphism and composition of morphisms is transitive).
9. Fix a directed set (P, \leq). An inverse system is an assignment for each $\alpha \in P$ of a mathematical object F_{α}, and for each $\alpha \leq \beta$ a morphism $f_{\alpha \beta} \in F_{\beta} \rightarrow F_{\alpha}$ so that $f_{\alpha \alpha}$ is the identity and that if $\alpha \leq \beta \leq \gamma$ we have $f_{\alpha \beta} \circ f_{\beta \gamma}=f_{\alpha \gamma}$.
DEF The inverse limit of an inverse system of groups is the group

$$
\lim _{\overleftarrow{\alpha}_{\alpha}} F_{\alpha}=\left\{\left(g_{\alpha}\right)_{\alpha} \in \prod_{\alpha \in P} F_{\alpha} \mid \forall \alpha \leq \beta: f_{\alpha \beta}\left(g_{\beta}\right)=g_{\alpha}\right\} .
$$

SUPP Treating (P, \leq) as a category, show that an inverse system in a category \mathcal{C} is a contravariant morphism $F: P \rightarrow \mathcal{C}$; define the inverse limit using a universal property, and check that this specializes to the notion above.
(a) Check that $F=\lim _{\overleftarrow{\alpha}} F_{\alpha}$ is a group, and that the coordinate projections $\pi_{\alpha}: F \rightarrow F_{\alpha}$ are compatible with the inverse system in the sense that $f_{\alpha \beta} \circ \pi_{\beta}=\pi_{\alpha}$.
(b) Suppose the F_{α} are topological groups and the $f_{\alpha \beta}$ are continuous. Show that if we equip $\prod_{\alpha \in P} F_{\alpha}$ with the product topology then $\lim _{\overleftarrow{\alpha}} F_{\alpha}$ is a closed subgroup, hence a topological group itself.
COR The inverse limit of a system of compact groups is compact.
DEF Call a group pro-C if it is the inverse limit of groups from class \mathcal{C}. Examples include profinite groups (inverse limits of finite groups), pro- p groups (inverse limits of finite p groups), prosolvable groups, pronilpotent groups, proalgebraic groups, etc.
(c)

Tensor products of locally convex vector spaces

Let X, Y be Banach spaces and let $X \otimes Y$ be their algebraic tensor product.
11. A cross norm on $X \otimes Y$ is a norm such that

$$
\begin{aligned}
\forall x \in X, y \in Y & :\|x \otimes y\| \leq\|x\|_{X}\|y\|_{Y} \\
\forall x^{\prime} \in X^{\prime}, y^{\prime} \in Y^{\prime} & :\left\|x^{\prime} \otimes y^{\prime}\right\| \leq\left\|x^{\prime}\right\|_{X^{\prime}}\left\|y^{\prime}\right\|_{Y^{\prime}} .
\end{aligned}
$$

(a) Let $\|\cdot\|$ be a cross norm. Show that equality holds above.
(a) Show that $\|t\|_{\pi}=\inf \left\{\sum_{i=1}^{r}\left\|x_{i}\right\|_{X}\left\|y_{i}\right\|_{Y} \mid t=\sum_{i=1}^{r} x_{i} \otimes y_{i}\right\}$ defines a cross norm on $X \otimes Y$, and that $\|t\|_{\pi} \geq\|t\|$ for all cross norms $\|\cdot\|$.
(b) Show that $\|t\|_{\varepsilon}=\sup \left\{\left|\left(x^{\prime} \otimes y^{\prime}\right)(t)\right| x^{\prime} \in X^{\prime}, y^{\prime} \in Y,\left\|x^{\prime}\right\|_{X^{\prime}}=\left\|y^{\prime}\right\|_{Y^{\prime}}=1\right\}$ defines a norm on $X \otimes Y$, and that $\|t\|_{\varepsilon} \leq\|t\|$ for all cross norms $\|\cdot\|$.
(c) Let $X \otimes_{\varepsilon} Y, X \otimes_{\pi} Y$ be the completions of $X \otimes Y$ with respect to these norms. Obtain a continuous inclusion $X \otimes_{\varepsilon} Y \hookrightarrow X \otimes_{\pi} Y$.
RMK In general this is not an isometry. but Grothendieck's famous inequality showed that for Hilbert spaces this is an isomorphism.

