Lior Silberman's Math 535, Problem Set 3: Representation Theory

Basic constructions

- 1. In each case give a precise definition and show that the reuslt is a continuous representation of the appropriate groups. In all cases $(\pi, V) \in \text{Rep}(G)$.
 - (a) $H \subset G$ a subgroup, $\operatorname{Res}_{H}^{G} \pi$ the *restriction* of π to H (still acting on V).
 - (b) W ⊂ V a closed invariant subspace, π ↾_W the restriction of π to W (still a representation of G).
 - (c) $W \subset V$ a closed invariant subspace, $\bar{\pi}$ the representation of G on V/W.
 - (d) The representation $\pi \oplus \sigma$ of *G* on $V \oplus W$ where $(\sigma, W) \in \text{Rep}(G)$ also.
- 2. Consider the representation $\check{\pi}$ of *G* on *V'* where $\check{\pi}(g)\varphi = \varphi \circ \pi(g^{-1})$.
 - (a) Show that $\check{\pi}(g): V' \to V'$ is linear and that $\check{\pi}(gh) = \check{\pi}(g)\check{\pi}(h)$.
 - (b) Show that $\check{\pi}: G \times V' \to V'$ is continuous where V' is equipped with the weak-* topology (the locally convex topology determined by the seminorms $|\varphi|_{v} = |\varphi(\underline{v})|$ where $\underline{v} \in V$
 - (c) Show that $\check{\pi}: G \times V' \to V'$ is continuous where V' is equipped with the *strong topology* (the locally convex topology determined by the seminorms $|\varphi|_E = \sup_{\underline{v} \in E} |\varphi(\underline{v})|$ where E ranges over the bounded subsets of V).
 - RMK If V is a Banach space, the strong topology on V' is exactly the norm topology with respect to the dual norm.
- 3. Let $(\sigma, W) \in \operatorname{Rep}(G)$
 - (a) Show that the natural action $\pi \boxtimes \sigma$ of $G \times H$ on the algebraic tensor product $V \otimes W$ defines an action by linear maps.
 - (b) Show that this action is a continuous representation if V, W are finite dimensional.

Constructions and Characters

Let $(\pi, V), (\sigma, W) \in \text{Rep}(G)$ be finite-dimensional with characters $\chi_{\pi}, \chi_{\sigma}$..

- 4. We compute some characters.
 - (a) Compute the characters of $\pi \oplus \sigma$, $\pi \otimes \sigma$ in terms of $\chi_{\pi}, \chi_{\sigma}$.
 - (b) Let $U \subset V$ be *G*-invariant, and let $\tau(g) = \pi(g) \upharpoonright_U$. Show that $\chi_{V/U} = \chi_{\pi} \chi_{\tau}$.
 - (c) Suppose instead that σ was a representation of a group *H* and compute the character of $\pi \boxtimes \sigma$ as a function on $G \times H$.
- 5. (Symmetric and antisymmetric tensor powers)

(a) For $k \ge 2$ show that $\operatorname{Sym}^k V$, $\bigwedge^k V$ are *G*-invariant subspaces of $V^{\otimes k}$.

DEF Write Sym^k π , $\bigwedge^{k} \pi$ for the resulting representations.

(b) Find the character of $\operatorname{Sym}^k \pi$

Examples of characters

- 6. Let *G* be a finite group and let *X* be a finite *G*-set.
 - (a) Show that setting $(\pi(g)f)(x) = f(g^{-1} \cdot x)$ defines a linear representation of G on $L^2(X)$ (counting measure).
 - (b) Show that $\chi_{\pi}(g) = \# \operatorname{Fix}(g)$.

- 7. In the context of problem 6 let $G = S_n$ act on $[n] = \{1, ..., n\}$.
 - (a) Show that $\pi \simeq \mathbb{1} \oplus V$ where $\mathbb{1}$ is the trivial representation on the constant vectors and V is the orthogonal complement.
 - (b) Compute the character χ of the representation on V, verify that $\langle \chi, \chi \rangle_{L^2(S_n)} = 1$ and conclude that χ is irreducible.
 - (c) Use $L^2(G) \simeq \bigoplus_{\pi \in \hat{G}} \pi \boxtimes \check{\pi}$ to show that $\widehat{S}_3 = \{1, \operatorname{sgn}, V\}$ (hint: dimension count).
 - (d) Decompose the representation arising from the action of S_n on the set $[n]^2$ into irreducibles, and connect it to problem 5.

Example: profinite groups

- 8. A partially ordered set is a pair (P, \leq) where P is a set and \leq is a transitive reflexive relation (but pairs of elements need not be comparable). A directed set is a partially ordered set in which for any $\alpha, \beta \in P$ there if $\gamma \in P$ with $\alpha, \beta \leq \gamma$.
 - (a) Show that the natural numbers with the usual order form a directed set.
 - (b) Let X be a topological space and let $x \in X$. Show that the set of neighbourhoods of X ordered by reverse inclusion ($U \le V$ if $V \subset U$) is directed.
 - (c) Let G be a group. Show that the set of finite index subgroups of G ordered by reverse inclusion is directed.
 - (d) We can view a directed set as a category where for every α, β Mor(α, β) has a unique element if $\alpha \leq \beta$ and is empty otherwise. Show that this is indeed a category (every element has an identity morphism and composition of morphisms is transitive).
- 9. Fix a directed set (P, \leq) . An *inverse system* is an assignment for each $\alpha \in P$ of a mathematical object F_{α} , and for each $\alpha \leq \beta$ a morphism $f_{\alpha\beta} \in F_{\beta} \to F_{\alpha}$ so that $f_{\alpha\alpha}$ is the identity and that if $\alpha \leq \beta \leq \gamma$ we have $f_{\alpha\beta} \circ f_{\beta\gamma} = f_{\alpha\gamma}$. DEF The *inverse limit* of an inverse system of groups is the group

$$\lim_{\leftarrow \alpha} F_{\alpha} = \left\{ (g_{\alpha})_{\alpha} \in \prod_{\alpha \in P} F_{\alpha} \mid \forall \alpha \leq \beta : f_{\alpha\beta}(g_{\beta}) = g_{\alpha} \right\}.$$

- SUPP Treating (P, \leq) as a category, show that an inverse system in a category C is a contravariant morphism $F: P \to C$; define the inverse limit using a universal property, and check that this specializes to the notion above.
- (a) Check that $F = \lim_{\alpha} F_{\alpha}$ is a group, and that the coordinate projections $\pi_{\alpha} \colon F \to F_{\alpha}$ are compatible with the inverse system in the sense that $f_{\alpha\beta} \circ \pi_{\beta} = \pi_{\alpha}$.
- (b) Suppose the F_{α} are topological groups and the $f_{\alpha\beta}$ are continuous. Show that if we equip $\prod_{\alpha \in P} F_{\alpha}$ with the product topology then $\lim_{\alpha} F_{\alpha}$ is a closed subgroup, hence a topological group itself.
- COR The inverse limit of a system of compact groups is compact.
- DEF Call a group pro-C if it is the inverse limit of groups from class C. Examples include profinite groups (inverse limits of finite groups), pro-p groups (inverse limits of finite pgroups), prosolvable groups, pronilpotent groups, proalgebraic groups, etc.
- (c)

Tensor products of locally convex vector spaces

Let *X*, *Y* be Banach spaces and let $X \otimes Y$ be their *algebraic* tensor product.

11. A *cross norm* on $X \otimes Y$ is a norm such that

$$\begin{aligned} \forall x \in X, y \in Y &: \|x \otimes y\| \le \|x\|_X \|y\|_Y \\ \forall x' \in X', y' \in Y' &: \|x' \otimes y'\| \le \|x'\|_{X'} \|y'\|_{Y'}. \end{aligned}$$

- (a) Let $\|\cdot\|$ be a cross norm. Show that equality holds above.
- (a) Show that $||t||_{\pi} = \inf \{\sum_{i=1}^{r} ||x_i||_X ||y_i||_Y | t = \sum_{i=1}^{r} x_i \otimes y_i\}$ defines a cross norm on $X \otimes Y$, and that $||t||_{\pi} \ge ||t||$ for all cross norms $||\cdot||$.
- (b) Show that ||t||_ε = sup {|(x' ⊗ y')(t)|x' ∈ X', y' ∈ Y, ||x'||_{X'} = ||y'||_{Y'} = 1} defines a norm on X ⊗ Y, and that ||t||_ε ≤ ||t|| for all cross norms ||·||.
 (c) Let X ⊗_ε Y, X ⊗_π Y be the completions of X ⊗ Y with respect to these norms. Obtain a
- continuous inclusion $X \otimes_{\mathcal{E}} Y \hookrightarrow X \otimes_{\pi} Y$.
- RMK In general this is not an isometry. but Grothendieck's famous inequality showed that for Hilbert spaces this is an isomorphism.