Lior Silberman’s Math 535, Problem Set 3: Representation Theory

Basic constructions

1. Ineach case give a precise definition and show that the reuslt is a continuous representation of
the appropriate groups. In all cases (7,V) € Rep(G).
(a) H C G a subgroup, Resg 7 the restriction of  to H (still acting on V).
(b) W C V aclosed invariant subspace, 7 [y the restriction of 7 to W (still a representation of
G).
(c) W CV aclosed invariant subspace, 7 the representation of G on V /W.
(d) The representation T & o of G on V@& W where (6,W) € Rep(G) also.

2. Consider the representation 7 of G on V' where 7(g)p = @om(g™!).

(a) Show that 77(g): V' — V' is linear and that %(gh) = %(g)%(h).

(b) Show that : G x V' — V' is continuous where V' is equipped with the weak-* topology
(the locally convex topology determined by the seminorms |@|, = |@(v)| where v € V

(c) Show that #: G x V' — V' is continuous where V' is equipped with the strong topology
(the locally convex topology determined by the seminorms ||, = sup,cz |@(v)| where E
ranges over the bounded subsets of V). -

RMK If V is a Banach space, the strong topology on V' is exactly the norm topology with
respect to the dual norm.

3. Let(o,W) € Rep(G)
(a) Show that the natural action X o of G X H on the algebraic tensor product V @ W defines
an action by linear maps.
(b) Show that this action is a continuous representation if V, W are finite dimensional.

Constructions and Characters
Let (m,V),(o,W) € Rep(G) be finite-dimensional with characters Xz, Xo-.-
4.  'We compute some characters.
(a) Compute the characters of 7 ® ¢, T® o in terms of Xz, Xo-
(b) Let U CV be G-invariant, and let 7(g) = 7(g) [v. Show that Xy y = Xz — X
(c) Suppose instead that o was a representation of a group H and compute the character of
nlX o as a function on G X H.

5. (Symmetric and antisymmetric tensor powers)
(a) For k > 2 show that Sym*V, AKV are G-invariant subspaces of VK,
DEF Write Sym* 7, AF 7 for the resulting representations.
(b) Find the character of Symk T

Examples of characters
6. Let G be a finite group and let X be a finite G-set.
(a) Show that setting (7(g)f) (x) = f(g~'-x) defines a linear representation of G on L?(X)
(counting measure).
(b) Show that yr(g) = #Fix(g).

18



7.

In the context of problem 6 let G = S, act on [n] = {1,...,n}.

(a) Show that w ~ 1 &V where 1 is the trivial representation on the constant vectors and V' is
the orthogonal complement.

(b) Compute the character y of the representation on V, verify that (x, x) 12(S,) = 1 and con-
clude that y is irreducible.

(c) Use L*(G) ~ D e TX % to show that Sy = {1,sgn,V} (hint: dimension count).

(d) Decompose the representation arising from the action of S, on the set [n]2 into irreducibles,
and connect it to problem 5.

Example: profinite groups

A partially ordered set is a pair (P,<) where P is a set and < is a transitive reflexive relation

(but pairs of elements need not be comparable). A directed set is a partially ordered set in

which for any o, B € P there if y € P with o, 8 < 7.

(a) Show that the natural numbers with the usual order form a directed set.

(b) Let X be a topological space and let x € X. Show that the set of neighbourhoods of X
ordered by reverse inclusion (U <V if V. C U) is directed.

(c) Let G be a group. Show that the set of finite index subgroups of G ordered by reverse
inclusion is directed.

(d) We can view a directed set as a category where for every a,8 Mor(a, 3) has a unique
element if o < B and is empty otherwise. Show that this is indeed a category (every
element has an identity morphism and composition of morphisms is transitive).

Fix a directed set (P, <). An inverse system is an assignment for each o € P of a mathematical
object Fy, and for each o < B a morphism fap € Fp — Fo so that foq is the identity and that

if o < B <y wehave fug0 fgy = fay-
DEF The inverse limit of an inverse system of groups is the group

o ocP

lgnFa: {(ga)a S HFoc Voo < : fap(8p) :ga}-

SUPP Treating (P, <) as a category, show that an inverse system in a category C is a con-
travariant morphism F: P — C; define the inverse limit using a universal property, and
check that this specializes to the notion above.

(a) Check that F = lim<7 Fy is a group, and that the coordinate projections 7y : F — Fy are

compatible with the inverse system in the sense that f,g 0 715 = 7.
(b) Suppose the Fy are topological groups and the fqg are continuous. Show that if we equip
[1aep Fo with the product topology then lim«— Fy is a closed subgroup, hence a topologi-

cal group itself.

COR The inverse limit of a system of compact groups is compact.

DEF Call a group pro-C if it is the inverse limit of groups from class C. Examples include
profinite groups (inverse limits of finite groups), pro-p groups (inverse limits of finite p-
groups), prosolvable groups, pronilpotent groups, proalgebraic groups, etc.

(©)

19



Tensor products of locally convex vector spaces

Let X,Y be Banach spaces and let X ® Y be their algebraic tensor product.
11. A cross norm on X ®Y is a norm such that
VxeX,yeY o [x@y| < |xlxlylly
vweXx' yey Hx/®y/H §||x" y’|

X/

(a) Let ||-]| be a cross norm. Show that equality holds above.

(a) Show that [¢]|, = inf{¥/_, |[xil|x [|yilly | £ = Li_; xi ®y;} defines a cross normon X ® Y,
and that ||7]| ; > [|¢]| for all cross norms ||-|.

(b) Show that |||, = sup{|(¥ @y )(#)|x' € X",y € Y, ||X||x» = |I/|lys = 1} defines a norm on
X ®Y, and that |¢]|, < ||z]| for all cross norms ||-||.

(c) Let X ®¢ Y, X ®7 Y be the completions of X ® Y with respect to these norms. Obtain a
continuous inclusion X ®, Y — X ®, Y.

RMK In general this is not an isometry. but Grothendieck’s famous inequality showed that for
Hilbert spaces this is an isomorphism.

Y -
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