Lior Silberman's Math 535, Problem Set 1b: Analysis

Haar measure

Let *X* be a locally compact topological space. Write C(X) for the space of continuous realvalued functions on *X*, and for $f \in C(X)$ write $||f||_{\infty} = \sup\{|f(x)| : x \in X\}$. It is well-known that the subspace $C_{b}(X) = \{f \in C(X) \mid ||f||_{\infty} < \infty\}$ is complete in the supremum norm and that it contains the subspace $C_{c}(X)$ of compactly supported functions.

DEFINITION. A Radon *measure* on X is a linear functional $\mu : C_c(X) \to \mathbb{C}$ such that $\mu(f) \ge 0$ if $f \ge 0$ (that is, if $f(x) \in \mathbb{R}_{\ge 0}$ for each x). If μ is a Radon measure and $f \in C_c(X)$ we often write $\int f d\mu$ instead of $\mu(f)$.

- 1. (Preliminaries)
 - (a) Show that the closure of $C_c(X)$ in $C_b(x)$ is the space $C_0(X)$ of functions vanishing at infinity (continuous functions f such that for all $\varepsilon > 0$ there is a compact set $K \subset X$ such that $|f(x)| < \varepsilon$ if $x \notin K$.
 - (b) Let $X' \subset X$ and let μ be a Radon measure on X. Show that $\mu \upharpoonright_{C_c(X')}$ is a Radon measure on X'.
 - (c) In particular, suppose *Y* is compact. Show that a Radon measure on *Y* is a bounded linear functional on $C(Y) = C_b(Y) = C_c(Y)$.
 - (d) Conclude that a Radon measure is continuous for the *direct limit topology* on $C_c(X)$.
- 2. Let *G* be a locally compact topological group.
 - (a) Let $f, f' \in C_{c}(G)$ be non-negative, and let $U \subset G$ be open. Set

$$(f:U) = \inf\left\{\sum_{i=1}^n \alpha_i \mid \alpha_i \ge 0, f \le \sum_{i=1}^n \alpha_i \cdot 1_{g_iU}\right\}.$$

Show that $0 \le (f:U) < \infty$. Assuming $f' \ne 0$ show that $(f:U) \le (f':U)(f:f')$ for an appropriately defined (f:f') which is independent of U.

- (b) Let \mathcal{N} be the set of open neighbourhoods of the identity in G; for $U \in \mathcal{N}$ set $F_U = \{V \in \mathcal{N} \mid V \subset U\}$. Show that $\mathcal{F} = \{S \subset \mathcal{N} \mid \exists U : S \supset F_U\}$ is a filter on \mathcal{N} (that is, if $S_1, S_2 \in \mathcal{F}$ and $T \subset \mathcal{N}$ then $S_1 \cap S_2, S_1 \cup T \in \mathcal{F}$). Show that for any $V \in \mathcal{N}$ there is $S \in \mathcal{F}$ with $V \notin S$ (" \mathcal{F} is not contained in any principal filter"). Let $\omega \subset \mathcal{N}$ be a maximal filter containing \mathcal{F} .
- (c) Fix $f_0 \in C_c(G)$ which is non-negative and non-zero. Show that $\mu(f) \stackrel{\text{def}}{=} \lim_{U \to \omega} \frac{(f:U)}{(f_0:U)}$ extends to a *G*-invariant Radon measure on *G*. Such μ is called a (left) *Haar measure* on *G*.
- (d) Show that $\mu(f) > 0$ for all non-negative non-zero $f \in C_c(G)$.
- (e) Suppose G is non-compact. Show that μ is an *infinite measure*: that $\mu : C_c(X) \to \mathbb{C}$ is unbounded with respect to the supremum norm.

- 3. (Uniqueness of Haar measure) Let μ_1, μ_2 be a left Haar measure on *G*. Fix a compact neighbourhood *K* of the identity in *G*.
 - (a) Given $f \in C_c(G)$ show that f is *uniformly continuous:* for any $\varepsilon > 0$ there is an open subset $U \subset K$ such that for all $x \in G$, $u \in U$ we have $|f(xu) f(x)| < \varepsilon$.
 - (b) Let $\chi \in C_c(U)$ be positive such that $\mu(\chi) = 1$ and let $(f \star \chi)(x) = \int_G f(xu)\chi(u) d\mu_1(u)$. Show that $||f \star \chi - f||_{\infty} \le \varepsilon$ and hence

$$\left|\int \mathrm{d}\mu_2(x)\int \mathrm{d}\mu_1(u)f(xu)\chi(u)-\int \mathrm{d}\mu_2(x)f(x)\right|\leq \varepsilon\mu_2(K)\,.$$

(c) Changing variables on the LHS show that

$$\left|\int \mathrm{d}\mu_2(x)f(x) - E\int \mathrm{d}\mu_1(x)f(x)\right| \leq \varepsilon \mu_2(K)$$

with $E = \int \chi(x^{-1}) d\mu_2(x) > 0$. Conclude that μ_1, μ_2 are proportional.

- 4 Fix a left Haar measure μ on *G*.
 - (a) For $f \in C_c(G)$ and $g \in G$ let $(R_g f)(x) = f(xg)$ be the left regular representation. Show that $\mu_g(f) \stackrel{\text{def}}{=} \mu(R_g f)$ is also a left Haar measure on *G*. It follows that there is $\delta_G(g) \in \mathbb{R}_{>0}^{\times}$ such that $\mu_g(f) = \delta_G(g^{-1})\mu(f)$ for all *f*.
 - RMK The g^{-1} is so that $\mu(Ag) = \delta_G(g)\mu(A)$ for every left Haar measure μ , measurable $A \subset G$ and $g \in G$.
 - (b) Show that $\delta_G \colon G \to \mathbb{R}_{>0}^{\times}$ is a continuous group homomorphism and is independent of the choice of Haar measure.
 - DEF The map $\delta_G \colon G \to \mathbb{R}_{>0}^{\times}$ is called the *modular character* of *G*. The group *G* is called *unimodular* if δ_G is the trivial character (identically 1).
 - (c) Show that $\mu(f(x^{-1})\delta(x))$ is a right Haar measure on *G*. Conclude that *G* is unimodular iff every left Haar measure is a right Haar measure.
 - (d) Suppose G is compact. Show that $\operatorname{Hom}_{\operatorname{cts}}(G, \mathbb{R}_{>0}^{\times}) = \{1\}$ and conclude that G is unimodular.
 - (e) Show that every abelian group and every discrete group is unimodular.
- 5. (Example of Haar measure) Let $GL_n(\mathbb{R}) = \{g \in M_n(\mathbb{R}) \mid \det g \neq 0\}$. Let μ be the measure on $GL_n(\mathbb{R})$ with density $\frac{1}{|\det(g)|^n}$ wrt Lebesgue measure in other words:

$$\int f(g) \,\mathrm{d}\mu(g) = \iint f\left((g_{ij})_{i,j=1}^n\right) \frac{1}{\left|\det(g)\right|^n} dg_{11} \cdots dg_{nn}.$$

Show that μ is a left- and right-invariant Haar measure.

The inverse and implicit function theorems

- 6. Let $U \subset \mathbb{R}^{n+m}$ be open, and let $f \in C^1(U; \mathbb{R}^m)$. Write df(x, y) = (K, J) where $K(x, y) \colon \mathbb{R}^n \to \mathbb{R}^m$ and $J(x, y) \colon \mathbb{R}^m \to \mathbb{R}^m$ and suppose that at some $(x_0, y_0) \in U$ we have that $J(x_0, y_0)$ is invertible.
 - (a) Show that there exists neighbourhoods *V* of x_0 and *W* of y_0 such that $V \times W \subset U$ and such that for all $x \in V$ there there is a unique $y \in W$ such that $(x, y) \in U$ and $f(x, y) = f(x_0, y_0)$. *Hint*: show that if *x* is close enough to x_0 then the approximate Newton iteration

$$H_x(y) = y - (J(x_0, y_0))^{-1} \cdot (f(x, y) - f(x_0, y_0))$$

is a well-defined contraction on some neighbourhood of y_0 , hence converges to a unique fixed point.

- DEF Let g(x) is the unique fixed point of part (a). We say $g: V \to W$ is the function *defined implicitely* by $f(x,y) = f(x_0,y_0)$. In particular we have $f(x,g(x)) = f(x_0,y_0)$.
- (b) Show that $g \in C^1(V)$, and that if V is small enough we have $dg = -(J(x,g(x)))^{-1}K(x,g(x))$
- (c) State the *inverse function theorem*, which the special case n = 0 of the result of (a),(b).