
Math 535: Real Groups
Lecture Notes

Lior Silberman



These are rough notes for the Spring 2023 course, version as of March 31, 2023.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/
4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Contents

Introduction 5
0.1. Administrivia 5
0.2. Background 5

Chapter 1. Basics: Locally compact groups and their representations 6
Motivation 6
1.1. Topological groups 6
1.2. Representation Theory 6
1.3. Compact groups: the Peter–Weyl Theorem 8

Chapter 2. Lie Groups and Lie Algebras 13
Motivation 13
2.1. Smooth manifolds 13
2.2. Lie groups 16
2.3. Lie Algebras and the exponential map 17
2.4. Closed Subgroups 19
2.5. The adjoint representation 21

Chapter 3. Compact Lie groups 24
3.1. Linearity 24
3.2. Characters and cocharacters of tori 24
3.3. The exponential map of a compact group 25
3.4. Maximal Tori 25
3.5. Roots and weights 28
3.6. Weyl chambers 32

Chapter 4. Representation Theory of Compact Lie Groups 39
4.1. Setup and preliminary observations 39
4.2. Weights 39
4.3. Theory of the heighest weight 43
4.4. Characters 48

Chapter 5. Semisimple Lie groups 54
5.1. Semisimple Lie algebras; the Cartan Involution 54
5.2. Cartan and Iwasawa Decompositions 57

Chapter 6. Representation theory of real groups 60

Appendix A. Functional Analysis 61
A.1. Topological vector spaces 61

3



A.2. Quasicomplete locally convex TVS 62
A.3. Integration 63
A.4. Spectral theory and compact operators 63
A.5. Trace-class operators and the simple trace formula 63

Appendix. Bibliography 64

4



Introduction

Lior Silberman, lior@Math.UBC.CA, https://www.math.ubc.ca/~lior
Office: Math Building 112B
Phone: 604-827-3031

0.1. Administrivia

• Problem sets will be posted on the course website.
– To the extent I have time, solutions may be posted on the LMS.

• Textbooks
– Warner, Lee
– Bröcker–tom Dieck, Representations of Compact Lie Groups (GTM-98)
– Knapp, Lie groups beyond an introduction
– Knapp, Representation Theory of Semisimple Groups

• No exams.

0.2. Background
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CHAPTER 1

Basics: Locally compact groups and their representations

Motivation

A Lie group is a smooth manifold equipped with a compatible group structure. In particular it
is a topological space equipped with a compatible group structure. Before investigating Lie groups
and their (continuous!) representations we will say a little on general topological groups and their
representations. The main result will be the Peter–Weyl Theorem, codified in Theorems 36, 38,
describing the representation theory of a compact group in terms of its unitary dual.

1.1. Topological groups

DEFINITION 1. A topological group is a group object in the category of Hausdorff topological
spaces. A homomorphism of topological groups is a continuous group homomorphism. An action
of the topological group G on the topological space X is a group action · : G×X → X which is
continuous for the product topology on G×X .

Note that the regular action of G on itself is a continuous action by homeomorphisms.

EXAMPLE 2. R, GLn(R), SLn(Q), Qp, CX
2 (X arbitrary!), etc..

LEMMA 3. Suffices to assume T1, that is that {e} ⊂ G is closed.

PROOF. By the invariance of the topology if {e} is closed so is every point, and it is enough
to separate e from g for every g 6= e. Since the group is T1, the set G\{g} is open. By continuity
of the map (x,y) 7→ xy−1 at the identity there is a neighbourhood (e,e) ∈U×V ⊂G×G such that
xy−1 6= g for al (x,y) ∈U×V . Then W =U ∩V works. �

LEMMA 4. Let H ⊂ G be a subgroup. Then the quotient topology on G/H is Hausdorff iff H
is closed.

PROOF. Exercise. �

REMARK 5. Algebraic groups are (generally) not topological groups. This directly follows
from the fact that the Zariski topology is not Hausdorff, but more fundamentally is related to the
fact that Zariski topology on the product of two k-varieties X×k Y is not the product topology.

1.2. Representation Theory

1.2.1. Continuous representations.

DEFINITION 6. A representation π of the topological group G on the TVS Vπ is a continuous
action by linear maps. A unitary representation is a represetation on a Hilbert space Vπ by unitary
maps.
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DEFINITION 7. Let (π,V ) and (σ ,W ) be representations of G. An intertwining operator (or
G-homomorphism) between them is a continuous map f : V →W such that

∀g ∈ G : σ(g)◦ f = f ◦π(g) .

We will write HomG (V,W ) for the set of G-homomorphisms, Rep(G) for the category of repre-
sentations and G-homomorphisms.

LEMMA 8. Let (π,V ) ∈ Rep(G). If W ⊂V is G-invariant then so is its closure W̄ .

DEFINITION 9. Call (π,V ) (topologically) irreducible if its only closed G-invariant subspaces
are the obvious ones.

EXAMPLE 10. Fix a group G. Representations of G include:
(1) The trivial representation is the unique representation with V = {0}.
(2) The regular representation on any function space on G, including C(G), Lp(G) (if G is

locally compact) etc. If p = 2 we obtain a unitary representation. If G is a manifold (see
later) we similar have actions on C∞(G),Cω(G) and also on appropriate Sobolev spaces.

(3) Simlarly for function spaces on G/H, and even more generally on topological G-spaces
X .

EXAMPLE 11. Let O(n) act on Sn−1, hence on various function spaces. It also preserves the
space of polynomial functions R[x1, . . . ,xn] (restrictions of polynomials to the sphere) which is
the direct sum of invariant finite-dimensional subspaces: R[x]=d (homogenous of degree d). This
direct sum is dense.

1.2.2. Constructions.

LEMMA-DEFINITION 12. Let (π,V ) and (σ ,W ) be representations of G. Then the following
are continuous representations:

(1) (π̌,V ′) where V ′ is the topological dual (say with the weak-* topology) π̌(g) =
(
π(g)−1)′

(dual map of π(g)−1 = π(g−1)).
(2) (π⊕σ ,V ⊕W ) where we equip V ⊕W with the product topology and set (π⊕σ)(g) =

π(g)⊕σ(g).
(3) (π̄,V/U) where U ⊂V is a G-invariant closed subspace and π̄(g)(v+U) = π(g)v+U.

PROOF. Exercise. �

LEMMA-DEFINITION 13 (Naive tensor product). Let (π,V ) ,(σ ,W ) be representations of G,H

respectively. Then G×H acts on the algebraic tensor product V ⊗W by (π⊗σ)(g,h)
def
= π(g)⊗

σ(h).

REMARK 14. When V,W are finite-dimensional so is V ⊗W and there is no problem with the
topology. In the infinite-dimensional case the situation is much more complicated (c.f. Grothendieck).

1.2.3. Matrix coefficients.

DEFINITION 15. Let (π,V ) be a representation of G. A matrix coefficient of V is any function

Φv,v′(g) =
〈
π(g)v,v′

〉
where v ∈V , v′ ∈V ′.
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REMARK 16. It is always the case that Φv,v′ ∈C(G). Further analytic properties of the matrix
coefficients (smoothness and decay) are very important.

LEMMA 17. The map (v,v′) 7→Φv,v′ is bilinear; the resulting map V ⊗V̌ →C(G) is an (alge-
braic) intertwining operator where G×G acts on C(G) by ((g1,g2) · f )(x) = f

(
g−1

2 xg1
)
.

PROOF. We only prove the last claim:

Φπ(g1)v,π̌(g2)v′(x) =
〈
π(x)π(g1)v,t π(g−1

2 )v′
〉

=
〈
π(g−1

2 )π(x)π(g1)v,v′
〉

=
〈
π(g−1

2 xg1)v,v′
〉

= Φv,v′(g
−1
2 xg1) .

�

REMARK 18. We see that abstract representations have concerete models.

DEFINITION 19. Say that an irrep (π,V ) of a locally compact group belongs to the discrete
series if it is isomorphic to an irreducible subrepresentation of the regular representation on L2(G).

EXAMPLE 20. Suppose (π,V ) is unitarizable, in that there is a G-invariant continuous Her-
mitian product on V (so that the completion is a Hilbert space). Equipping V ′ with the dual inner
product, which is also invariant, we see that the matrix coefficients of π are bounded.

1.3. Compact groups: the Peter–Weyl Theorem

In this section G is a compact group, equipped with its probability Haar measure dg.

1.3.1. Finite-dimensional representations: Schur orthogonality. Fix a representation (π,V )
of G where V is finite-dimensional.

LEMMA 21 (Unitarity). There is a G-invariant Hermitian product on V .

PROOF. Let (·, ·) be any Hermitian product on V , and for u,v ∈V set

〈u,v〉=
∫

G
(π(g)u,π(g)v)dg

where dg is the probability Haar measure on G. �

COROLLARY 22. Let W ⊂ V be an invariant subspace. Then it has a complement: another
invariant subspace W⊥ such that V =W ⊕W⊥.

PROOF. Take the orthogonal complement wrt an invariant Hermitian product. �

The following should be compared with the spectral theorem.

THEOREM 23 (Maschke). Every finite-dimensional representation is a direct sum of irre-
ducible subspaces.

PROOF. Let U ⊂ V be maximal wrt inclusion among all subspaces which are direct sums of
irreducibles. If U 6= V then U⊥ is non-trivial; let W ⊂ U⊥ be a non-zero invariant subspace of
minimal dimension. Then W is necessarily irreducible and U⊕W is the direct sum of irreducibles,
a contradiction. �
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PROBLEM 24. How does the unitary structure interact with our abstract representaiton theory
from before? In particular, does our notion of isomorphism change?

PROPOSITION 25 (Schur’s Lemma). Let (π,V ) ,(σ ,W ) be finite-dimensional irreducible rep-

resentations of G. Then HomG (V,W )'

{
C π ' σ

0 π 6' σ
.

PROOF. Since the kernel and image of an intertwining operator are invariant subspaces, any
non-zero G-homomorphism from an irrep is injective and to an irrep is surjective. In particular,
if π,σ are non-isomorphic they support no non-zero maps between them. It remains to compute
HomG(V,V ). For this let T ∈ HomG(V,V ), so that π(g)T = T π(g) for all g ∈ G. Since C is
algebraically closed, T has at least one eigenvalue λ ; let Vλ = Ker(T −λ ), a non-trivial subspace
of V . Then for any v ∈ Vλ we have (T −λ )(π(g)v) = π(g)((T −λ )v) = 0 so that π(g)v ∈ Vλ as
well. It follows that Vλ ⊂V is a G-invariant subspace, and hence that Vλ =V and T = λ Id. �

OBSERVATION 26. Every matrix cofficient ofa continuous representation is a continuous func-
tion on the compact space G, hence square-integrable.

PROPOSITION 27 (Schur Orthogonality). Let (π,V ),(σ ,W ) ∈ Rep(G) be finite-dimensional
irreps.

(1) If π,σ are non-isomorphisc then any two matrix coefficients of π,σ are orthogonal.
(2) Let dπ = dimVπ . Then for any v,w ∈V and v′,w′ ∈V ′ we have〈

Φ
π

u,u′,Φ
π

v,v′

〉
L2(G)

=
1

dπ

〈
v,u′
〉〈

u,v′
〉

PROOF. Let T : V →W be any linear map, and let

T̄ =
∫

G
σ(g−1)T π(g)dg .

Then

T̄ π(h) =
∫

G
σ(g−1)T π(gh)dg

=
∫

G
σ(hg−1)T π(g)dg

= σ(h)T̄ .

It follows that T̄ ∈HomG(V,W ). Next, for any v∈V, v′ ∈V ′, w∈W, w′ ∈W ′ let T = |w〉〈v′|. Then〈
w′
∣∣ T̄ |v〉 =

∫ 〈
w′
∣∣σ(g−1) |w〉

〈
v′
∣∣π(g) |v〉dg

=
∫

G
dg〈w|σ(g) |w′〉

〈
v′
∣∣π(g) |v〉

=
〈

Φ
σ

w′,w,Φ
π

v,v′

〉
L2(G)

,

where we have identified W ′ with W via the Riesz representation theorem and the inner product.
(1) Suppose π,σ are non-isomorphic. Then T̄ = 0 and the two matrix coefficients are orthog-

onal.
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(2) Suppose V =W , π = σ . Then T̄ = λ Id for some λ ∈ C. Normalizing the Haar measure
on G to be a probability measure, we see that T̄ is the average of conjugates of T so

dπλ = Tr T̄ = TrT =
〈
v′,w

〉
.

Solving for λ it follows that〈
Φ

π

w′,w,Φ
π

v,v′

〉
L2(G)

=
〈
w′
∣∣ T̄ |v〉= λ

〈
w′
∣∣ Id |v〉

=
1

dπ

〈
w′,v

〉〈
v′,v
〉
.

�

COROLLARY 28. 〈χπ ,χσ 〉L2(G) = δπ'σ .

COROLLARY 29. For each finite-dimensional irrep π let C(π) be the space of matrix coeffi-
cients of π . Then ⊕

π

C(π)⊂ L2(G)

is an orthogonal direct sum.

1.3.2. Infinite-dimensional representations and the Peter–Weyl Theorem. Let (π,V ) be a
continuous representation of the locally compact group G on the quasi-complete locally convex
TVS V .

LEMMA-DEFINITION 30. TFAE for v ∈V , in which case we call it G-finite
(1) SpanC {π(g)v}g∈G ⊂V is finite-dimensional.
(2) There is a finite-dimensional G-invariant subspace W ⊂V with v ∈W.

Furthermore, the set VG of G-finite vectors is a G-invariant algebraic subspace of V .

PROOF. Given (1), set W = SpanC {π(g)v}g∈G to get (2). Given (2), SpanC {π(g)v}g∈G ⊂W
for all G-invariant subspaces W containing v. Finally, if v1,v2 ∈ VG, say with vi ⊂Wi with Wi
G-inv’t and f.d. then αv1 + v2 ∈W1 +W2 which is G-inv’t and f.d. �

PROPOSITION 31. In a compact group G we have
⊕

π C(π) = L2(G)K , where G acts on L2(G)
via the right-regular representation (Rg f )(x) = f (xg).

PROOF. Since each C(π) is finite-dimensional, their algebraic direct sum is contained in C(G)K ⊂
L2(G)K . Conversely, let W ⊂L2(G) be a right-G-invariant finite-dimensional subpsace. By Maschke’s
Theorem 23, W is the direct sum of irreducible subpsaces so without loss of generality it suffices
to show W ⊂

⊕
π C(π) for irreducible W .

Thus let { fi}d
i=1 ⊂W be an orthonormal basis. Then for f ∈W and g ∈ G we have Rg f ∈W

and hence

Rg f =
d

∑
i=1

ai(g) fi

for some ai(g) ∈ C. In fact,

ai(g) =
〈

fi,Rg f
〉

L2(G)
= Φ

W
fi, f (g) ∈ C(W )
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and we conclude that for fixed g

Rg f =
d

∑
i=1

Φ
W
fi, f (g) fi

(the sum in W ⊂ L2(G)). In other words, given g it holds for almost every x ∈ G that

f (xg) =
d

∑
i=1

Φ
W
fi, f (g) fi(x) .

If the identity held for all x we could set x = e and write f as a linear combination of matrix
coefficients. To get around this difficulty consider both sides as functions on G×G. Now both
sides are in L2(G×G), so by Fubini they are equal a.e. Applying Fubini in the other order it
follows that for almost every x ∈ G we have f (xg) = ∑

d
i=1 ΦW

fi, f (g) fi(x) for almost every g ∈ G,
and that is the desired claim. �

DEFINITION 32 (Topological group ring). For f ∈Cc(G) and v ∈V set π( f )v by

π( f )v =
∫

G
f (g)π(g)vdg .

LEMMA 33. π( f ) : V →V is a continuous linear map, and f 7→ π( f ) is a continuous algebra
homomorphism Cc(G)→ End(V ) where Cc(G) is equipped with the convolution product and the
direct limit topology.

PROOF. Scaling, we may assume | f (g)| ≤ 1 for all g. Let U ⊂ V be a closed convex neigh-
bourhood of zero. Then for each g ∈ supp( f ) there are neighbourhoods g ∈Wg ⊂ G and (convex)
0 ∈Ug ⊂ V such that π(x)u ∈ 1

volsupp( f )U for all x ∈Wg, u ∈Ug. Covering supp( f ) with ∪r
i=1Wgi

and setting Ū = ∩r
i=1Ugi we see that for all g ∈ supp(g) and v ∈ Ū , f (g)π(g)v ∈ 1

volsupp( f )U . It
follows that π( f )v ∈U .

Rest proved similarly. �

COROLLARY 34. Let { fn} ⊂Cc(G) be an approximate identity. Then π( fn)v→ v.

EXAMPLE 35 (Smoothing). Let V ⊂ L2(G) be a closed G-invariant subspace. Then V ∩C(G)
is dense in G.

PROOF. It suffices to show that π( f )ϕ ∈C(G) for each f ∈Cc(G), ϕ ∈ L2(G). Indeed,

(π( f )ϕ)(x) =
∫

f (g)ϕ(g−1x)dg

=
∫

f (xg)ϕ(g−1)dg

so that

|(π( f )ϕ)(x)− (π( f )ϕ)(y)| =

∣∣∣∣∫ δ (g)
(

f (xg−1)− f (yg−1)
)

ϕ(g)dg
∣∣∣∣

≤
∥∥δ (g)

(
f (xg−1)− f (yg−1)

)∥∥
L2(G)

‖ϕ‖L2(G)

−−→
y→x

0

since f is uniformly continuous and δ is bounded on any compact set.
Suppose now that G is compact. �
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THEOREM 36 (Peter–Weyl I). We have

L2(G) =
⊕̂

π

C(π) .

PROOF. Let V = (
⊕

π C(π))
⊥ and note that V is a subrepresentation of

(
L2(G),L×R

)
. If

V 6= {0} let f ∈ V be non-zero, and by continuity of the left G-action on L2(G) let U ⊂ G
be a symmetric, conjugation-invariant neighbourhood of 1 such that ‖Lu f − f‖2 ≤ 1

2 ‖ f‖. Let
χ ∈ Cc(U) be positive, satisfy χ(u) = χ(u−1), integrate to 1 and be conjugation invariant. Then
‖L(χ) f − f‖2 ≤ 1

2 ‖ f‖ and in particular L(χ) : V →V is a non-zero operator. It is also self-adjoint
and compact. By the spectral theorem its eigenspaces are finite-dimensional; they are also Rg-
invariant and it follows that V contains G-finite vectors, a contradiction. �

COROLLARY 37 (Peter–Weyl II).
⊕

π Cc(π) is dense in C(G).

PROOF. Since the product of matrix coeffs is a matrix coefficient of the tensor product, this is
a subalgebra closed under complex conjugation and it suffices to show it separates the points. By
G-invariance it suffices to separates points from the identity.

For this consider
⋂

π Ker(π). Every f ∈ L2(G) is invariant by this closed subgroup, so it’s
trivial. It follows that for any g ∈ G there is π such that π(g) 6= id. Let v ∈ Vπ be of norm 1 such
that π(g)v 6= v. Then by unitarity 〈π(g)v,v〉 6= 1 and hence

Φv,v(g) 6= 1 = Φv,v(e) .

�

THEOREM 38 (Peter–Weyl II). Every irrep of G is finite-dimensional; for any representation
VG is dense in V .

PROOF. Clearly the second assertion implies the first. We first note that the argument of The-
orem 36 shows that {π(χ)v | v ∈V, χ ∈C(G)} is dense in V , and its corollary shows that C(G)G
is dense in C(G). By the continuity of Lemma 33 this means that {π(χ)v | v ∈V, χ ∈C(G)G} is
dense in V , and this space consists of G-finite vectors. �
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CHAPTER 2

Lie Groups and Lie Algebras

Motivation

A Lie group is a smooth manifold equipped with a compatible group structure. In particular it
is a manifold. We therefore being by defininig what we mean by manifolds,

2.1. Smooth manifolds

2.1.1. Manifolds.

DEFINITION 39. Let U ⊂ Rn be open. Then C∞(U ;Rm) is the set of infinitely differentiable
Rm-valued functions on U .

DEFINITION 40. A manifold is a space (M,F) where M is a topological space and F is a sheaf
on M which is locally isomorphic to the sheaf of smooth functions on an open subset of Rn.

DEFINITION 41. A coordinate chart (or patch) in a topological space M is a pair (U,ϕ) where
U ⊂M is open and ϕ : U → Rn is a homeomorphism onto an open subset of Rn. Two coordinate
patches (U1,ϕ1) ,(U2,ϕ2) are compatible if ϕ1 �U1∩U2 ◦(ϕ2 �U1∩U2)

−1 is a smooth map.
An altas on M is a covering of M by compatible coordinate patches. A smooth manifold is a

pair (M,A) where M is a second countable topological space and A is an atlas on M.

EXAMPLE 42. Rn, Sn, Tn.

LEMMA 43. If two charts are compatible with an atlas they are compatible with each other.

COROLLARY 44. Every atlas is contained in a maximal atlas, namely the set of all charts
compatible with the given atlas.

DEFINITION 45. A maximal atlas is also known as a smooth structure on M.

EXAMPLE 46. Exotic spheres.

LEMMA 47. If m 6= n Rm,Rn are not locally homeomorphic so for a connected manifold the
dimension need not be assumed constant.

DEFINITION 48. Let M,N be smooth manifolds. A map f : Mm→ Nn is smooth if for every
charts (U,ϕ) of M and (V,ψ) of N, ψ ◦ f ◦ϕ−1is smooth.

LEMMA 49. Composition of smooth maps is smooth.

2.1.2. Tangent and contagent spaces. Fix a vector space k.

DEFINITION 50. A Lie algebra over k is a k-vector space g equipped with a bilinear form
[·, ·] : g×g→ g satisfying:

(1) (alternating) [X ,X ] = 0
13



(2) (Jacobi identity) [[X ,Y ] ,Z]+ [[Y,Z] ,X ]+ [[Z,X ] ,Y ] = 0.

EXAMPLE 51 (Standard constructions). Let A be an associative k-algebra. We get two natural
Lie algebras from it:

(1) A itself, equipped with [a,b] = ab−ba.
(2) Call d ∈ Endk-vsp(A) a derivation if d(ab) = d(a)b+ad(b). Then the spaceDA of deriva-

tions is a Lie subalgebra of Endk-vsp(A).

(3) One canonical example: A = C∞(M); then DM
def
= DC∞(M) is called the set of (smooth)

vector fields on M.

LEMMA 52 (Localization of vector fields). Let X ∈ DM, f ,g ∈C∞(M).
(1) Let f be constant. Then X f ≡ 0.
(2) Let f (p) = g(p) = 0. Then (X( f g))(p) = 0.
(3) Let f be constant in a neighbourhood of p. Then (X f )(p) = 0. In particular, if f = g in

a neighbourhood of p then X f (p) = Xg(p).

PROOF. Say f (p) = 1 for all x. Then X f = X
(

f 2) = 2 f ·X f = 2X f . It follows that X f ≡ 0.
Simliarly, if f (p) = g(p) = 0 then (X( f g))(p) = (X f (p))(g(p))+( f (p))(Xg(p)) = 0.

Let U be a neighbourhood of p ∈ U and suppose f �U≡ 1. Choose g ∈ C∞
c (U) such that

g(p) 6= 0. Since f g = g we have X f · g+ f ·Xg = Xg, Evaluating at p we get X f (p)g(p) = 0 so
X f (p) = 0. �

LEMMA-DEFINITION 53. Ip = { f ∈C∞(M) | f (p) = 0} is a maximal ideal of C∞(M).

LEMMA-DEFINITION 54 (Hadamard). The contagent space T ∗p M = Ip/I2
p is a vector space of

dimension n and
⋃

p∈M T ∗p M is a vector bundle, the contagent bundle.

PROOF. Let f vanish in a neighbourhood U of p, and let g ∈C∞
c (U) vanish at p as well. Then

f = f g ∈ I2
p. It follows that f ,g ∈C∞(M) agree in a neighbourhood of p then f −g ∈ I2

p. We can
now work locally, in particular near 0 ∈ Rn. We next show that every class in Ip/I2

p has a linear
representative. Indeed let f be smooth in a neighbourhood of 0 ∈ Rn and set g(t) = f (tx). Then

f (x)− f (0) = g(t)−g(1) =
∫ 1

0
g(t)dt

=
∫ 1

0
x ·∇f (tx)dt

=
n

∑
i=1

xi ·
∫ 1

0

∂

∂xi f (tx)dt

= ∇ f (0) · x+
n

∑
i=1

xihi

where hi(x) =
∫ 1

0
∂

∂xi f (tx)dt− ∂ f
∂xi (0) ∈ I0. It follows that

f (x)− f (0)−∇ f (0) · x ∈ I2
p .

To see that the linear functions inject into Ip/I2
p (so that the dimension is n) note that each linear

function has a non-zero directional derivative, but that operation is a derivation in C∞(U) (U ⊂Rn)
and vanishes on elements of I2

p. �
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LEMMA-DEFINITION 55 (The tangent space). The linear dual TpM = HomR
(
T ∗p M,R

)
is

called the tangent space. The resulting bundle is called the tangent bundle.
(1) The pairing (X , f ) 7→ X f (p) associates to each vector field X a linear functional on T ∗p X.
(2) The resulting map DM→

(
T ∗p M

)′ is surjective.

CONCLUSION 56. In local coordinates, a vector field is an operator of the form ∑
n
i=1 ai(x) ∂

∂xi .

EXERCISE 57. TpM is also the space of derivations on the algebra of germs of smooth functions
at p.

PROPOSITION 58 (Canonical sheaf). (1) Let X be a vector field on M, U ⊂M an open set.
For f ∈C∞(U) and p ∈U let h ∈C∞

c (U) such that h ≡ 1 near p and set (X �U f )(p) =
(X (h f ))(p) (note that h f ∈C∞

c (M)). Then X �U is a well-defined vector field on U and
X 7→ X �U is a map of lie algebras.

(2) (Patching) Let {Ui}i∈I be an open cover of M. Let X ,Y be a vector fields on M and
suppose that X �Ui= Y �Ui for all i then X = Y .

(3) (Gluing) Let {Ui}i∈I be an open cover of M and suppose given for each i a vector field Xi
on Ui such that Xi �Ui∩U j= X j �Ui∩U j for all i, j. Then there is a vector field X on M such
that Xi = X �Ui .

2.1.3. Derivatives of maps.

LEMMA-DEFINITION 59. Let ϕ : M→ N be a smooth map. Let p ∈ M and v ∈ TpM. Then
the map dϕp(v) : C∞(N)→ R given by f 7→ v( f ◦ϕ) is a local derivation at ϕ(p). It is called the
differential of ϕ . The map dϕp : TpM→ Tϕ(p)N is linear and extends to a smooth map dϕ : T M→
T N compatible with ϕ . The construction is functorial (in other words, the chain rule holds).

THEOREM 60 (Inverse and implicit function theorems). Let ϕ : M→ N be smooth.
(1) Suppose dϕp is injective. Then ϕ is injective in a neighbourhood of p.
(2) Suppose dϕp is a surjective. Then ϕ is an open map in a neighbourhood of p.
(3) Suppose dϕp is an isomorphism. There are open neighbourhoods of p and ϕ(p) for which

ϕ is a diffeomorphism.
(4) Suppose dϕp is surjective for p on a level set P = ϕ−1(n). Then the level set is a subman-

ifold of dimension dimN−dimM.

DEFINITION 61. A smooth map f : M→ N is a:
(1) Immersion if d fp is injective for every p ∈M.
(2) Local embedding if for every p ∈ M there is a neighbourhood U such that f �U is a

homeomorphism onto its image (with the relative topology).
(3) An embedding if it is an injective immersion which is a homeomorphism onto its image.
(4) A diffeomorphism if it has a smooth inverse.

THEOREM 62 (Inverse function theorem). f is an immersion iff it is a local embedding.

EXAMPLE 63. The line that almost meets itself.

DEFINITION 64. A parametrized submanifold of N is a pair (M, f ) where f : M → N is an
injective immersion. Two parametrizations (M1, f1) ,(M2, f2) are equivalent if they are conjugate
by a diffeomorphism of M1,M2. A submanifold of N is an equivalence class.
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If (M, f ) is a parametrized submanifold N then T (N) = f∗(T M) is a subbundle of T N �M. It is
independent of the choice of parametrization. Conversely, we’d like to investigate when a choice
of subspace of TpM at each p corresponds to a submanifold.

DEFINITION 65. Let γ : [a,b]→M be a smooth curve. We then set γ̇(t) = dγ

(
∂

∂ t

)
(t). We say

γ is an integral curve of X ∈ DM if γ̇(t) = X (γ(t)) for each t.

• The Picard Theorem on ODE shows that for any X and p ∈M there is an integral curve of
X through p living on an interval about 0, and that any two integral curves with γ(0) = p
agree on their interval of definition.

We now generalize this from 1-dimensional submanifolds to higher dimension.

DEFINITION 66. A distribution of dimension k on M is equivalently either of:
(1) A smooth choice of k-dimensional subspaces Vp ⊂ TpM for each p ∈M.
(2) A smooth section of the Grassmanian bundle, or a subbundle of T M.
(3) For a covering set of neighbourhoods U ⊂M choices of vector fields {Xi}k

i=1⊂DU so that
for each p ∈U , {Xi(p)} ⊂ TpM are linearly independent and so that Vp = SpanR {Xi(p)}i
is independent of U as long as p ∈U .

Call a vector field X ∈ DM a section of the distribution V if (1) Xp ∈ Vp for each p iff (2) it is a
section of the subbundle (3) For each U there are ai ∈C∞(U) so that X �U= ∑i aiXi.

DEFINITION 67. Call a submanifold
(
Nk,ϕ

)
of M tangent to the distribution V if for each

p ∈ N, dϕp is an isomorphism of TpN and Vϕ(p) ⊂ Tϕ(p)M.

OBSERVATION 68. Suppose N ⊂M is tangent to V , and let X ,Y be sections of V . We can then
think of X ,Y as vector fields on N, so that [X ,Y ] is a vector field on N as well. It follows that [X ,Y ]
is also a section of V .

In fact, this necessary condition is also sufficient:

THEOREM 69 (Frobenius). The following are equivalent for a distribution V on M:
(1) Through each p ∈M there is a unique (up to equivalence) submanifold tangnet to V ; this

submanifold is injectively submersed.
(2) The distribution is completely integrable: for every two sectoins X ,Y of V , the vector field

[X ,Y ] is also a section.

REMARK 70. In the local view above it suffices to check that the integrability condition on the
spanning fields:

[
Xi,X j

]
= ∑k akXk for some ak ∈C∞(U).

2.2. Lie groups

DEFINITION 71. A Lie group is a group object in the category of smooth manifolds, in other
words a smooth manifold G together with smooth maps · : G×G→ G and −1 : G→ G such that(
G, ·,−1 ) is an abstract group. A homomorphism of Lie group is an abstract homomorphism which

is also a smooth map.

EXAMPLE 72. The basic example is R, but we also have:
(1) Rn, (R/Z)n = Rn/Zn

(2) GLn(R), SLn(R), GLn(C), Sp2n(R)
16



(3) O(n), SO(n), SO(Q) = SO(p,q), U(n), SU(n)
(4) Direct and semidirect products.
(5) Isom(En), Isom(M,g)
(6) Affn(R)

DEFINITION 73. An action of a Lie group G on a smooth manifold M is a smooth map · : G×
M→M which is a group action.

DEFINITION 74. A Lie subgroup H of the Lie group G is a subgroup H < G which is also a
submanifold, in other words the image of an injective immersion of Lie groups.

EXAMPLE 75. Line of irrational slope on a torus.

REMARK 76. There is some play in the joints here.

(1) Enough to assume C2, and may assume real-analytic (any C2 structure is compatible with
a unique smooth, even real-analytic, structure).

(2) Sophus Lie actually considered local Lie group actions.

2.3. Lie Algebras and the exponential map

2.3.1. Lie algebra. The Lie group G acts on itself by left multiplication. This regular action
is a smooth action. In particular each g ∈ G acts by translation on the set of vector fields of G, and
we call a vector field X left-invariant if g ·X = X . Recall that for any manifold we have a surjective
map {DM}→ TpM.

LEMMA 77. Restricting this map to the left-invariant vector fields on G gives a linear isomor-
phism {left-invariant vector fields on G}→ TeG.

PROOF. For the inverse map, for any manifold M a smooth action of G on M extends to a
smooth action on T M by g · (p,v) = (gp,dg(v)) where dg is the derivative of the map g· : M→M.
In particular, G acts on T G . Now for v ∈ TeG the orbit g 7→ g · (e,v) is a smooth left-invariant
vector field. �

Note that if X ,Y are left-invariant so is [X ,Y ].

DEFINITION 78. The Lie algebra of G is the Lie algebra of left-invariant vector fields, equiv-
alently the same Lie algebra realized as the tangent space TeG. We write g = Lie(G) for the Lie
algebra.

THEOREM 79. If f ∈ Hom(G,H) then d f : g→ h is a Lie algebra homomorphism.

• For the converse see XXXX below.

LEMMA 80. A connected topological group is generated by any open subset

THEOREM 81. Every subalgebra exponentiates to a subgroup

PROOF. The distribution defined by the subalgebra is integrable, so apply Frobenius. The leaf
through the origin is self-invariant, hence a subgroup. �
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2.3.2. Exponential map.

LEMMA-DEFINITION 82. The integral curves of left-invariant vector fields live forever. Write
the integral curve of X ∈ g as t 7→ eX(t) = exp(tX). We then have exp((t+s)X) = exp(tX)exp(sX).

PROOF. By the Picard Theorem there is an integral curve eX(t) on some interval (−ε,ε) with
eX(0) = e; it satisfies d

dxeX(t) = eX(t)∗X . Now let α(s) be any integral curve of this vector field,
defined on some open interval (a,b). For any s0 ∈ (a,b) consider the curve

α̃(s) = α(s0)eX(s− s0) .

We have α̃(s0) = α(s0) and
d
ds

α̃(s) = α(s0)∗eX(s− s0)∗X = α̃(s)∗X

hence
d
ds

α̃(s)
∣∣
s=s0

= α(s0)∗X .

It follows that both α(s), α̃(s) are integral curves of the vector field through α(s0). By uniqueness
the solution extends at least to (a,b)∪ (s0− ε,s0 + ε), and taking s0 close to a,b we get that the
solutions live forever. Applying the reasoning in particular to α(s) = eX(s) we get that eX(s) =
eX(s0)eX(s− s0) that is eX(s+ t) = eX(s)eX(t).

Finally, for fixed a the curve eX(at) satisfies
d
dt

eX(at) = aeX(at)∗X = eX(at)∗(aX) ,

so eX(at) is an integral curve of the field aX . Since eX(a0) = eaX(0) as well we concldue that
eX(at) = eaX(t) and in particular that eX(t) only depends on the product tX and not on t,X sepa-
rately, justifying the notation exp(tX). �

THEOREM 83. exp: g→ G is a local diffeomorphism with derivative Id.

PROOF. Solutions to ODE are differentiable wrt parameters, so exp(X) = eX(1) is differen-
tiable wrt X . To determine d exp we evaluate d

dt |t=0 exp(tX) in two different ways. On the one
hand by the chain rule

d
dt
|t=0 exp(tX) = d exp

(
d
dt
(t 7→ tX)

)
= (d exp)(X)

and on the other hand by definition we have
d
dt
|t=0 exp(tX) =

d
dt
|t=0eX(t) = X .

�

• Interpretation: for each X ∈ g we have a unique Lie group homomorphism eX : R→ G
such that (deX)(0) = X .

COROLLARY 84. Exponential map of GLn(R) is given by the matrix exponential.

PROOF. This is a Lie group homomorphism. �

COROLLARY 85 (Exponential coordinates). For any direct sum decomposition g=
⊕r

i=1Vi the
map (Xi)

r
i=1 7→∏

r
i=1 exp(Xi) is a local diffeomorphism.
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LEMMA 86. Homomorphisms repsect the exponential map

PROOF. Let f : G→ H. Then f (expG(tX)) is a Lie group homomorphism R→ H with

d
dt
|t=0 ( f (expG(tX))) = d f

(
d
dt
|t=0 expG(tX)

)
= d f (X)

so
f (expG(tX)) = expH (t ·d f (X)) .

�

2.4. Closed Subgroups

2.4.1. Cartan’s Theorem. Fix a Lie group G and let H be a closed subgroup. We want to
show that H is a Lie subgroup. Our strategy is to identify the Lie algebra of H and then show that
the restriction of (inverse of) the exponential map gives a coordinate patch.

For this fix small neighbourhoods of the identity 0∈V0⊂ g and e∈U0⊂G such that exp: V0→
U0 is a diffeomorphism, and let log : U0→V0 be its inverse. Also fix a norm |·| on g (arbitraily).

Step 1: we identify the Lie algebra of H. For this let

h1 = {X ∈ g | ∀t ∈ R : exp(tX) ∈ H}

h2 = R ·
{

lim
n→∞

loghn

|loghn|
| {hn}∞

n=1 ⊂ H \{e} : lim
n→∞

hn = e
}
.

LEMMA 87. We have h1 = h2, which is a vector subspace h⊂ g.

PROOF. If X ∈ h1 is nonzero then limt→0 exp(tX) = e and

lim
t→0

log(exp(tX))

|log(exp(tX))|
= lim

t→0

tX
|tX |

=
X
|X |

.

It follows that X
|X | ∈ h2 so X ∈ h2 as well and h1 ⊂ h2. Conversely suppose hn → e such that

loghn
|loghn| → X . Then for any sequence mn ∈ Z we have

H 3 hmn
n = exp(mn loghn) = exp

(
loghn

|loghn|
·mn |loghn|

)
.

Since |loghn| are nonzero but tend to zero for any t ∈ R we can choose mn so that mn |loghn| → t.
Since exp is continuous it will follow that hmn

n → exp(tX) and since H is closed it will follow that
exp(tX) ∈ H and hence that X ∈ h1.

Finally given X ,Y ∈ h1 with X +Y 6= 0 let Z(t) = log(exp(tX)exp(tY )). Then Z(0) = 0 and
Then d

dt |t=0Z(t) = X +Y so Taylor expansion gives.

log(exp(tX)exp(tY )) = t (X +Y )+O(t2) .

T We then have |Z(t)|= |t| |X +Y |+O(t2). It follows that
Z(t)
|Z(t)|

−−→
t→0

X +Y
|X +Y |

and since exp(tX)exp(tY ) ∈ H for all t we get that X+Y
|X+Y | ∈ h2 so X +Y ∈ h1. This set is also

clearly closed under rescaling so is a subspace.
Step 2: exp: h→ H is a local bijection.
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For this fix a complementary subspace k so that g = h⊕ k, and let V1 ⊂ V0 be a small enough
neighbourhood so that

h⊕ k 3 X +Y 7→ exp(X)exp(Y )
is a diffeomorphism onto a neighbourhood U1 ⊂U0. �

LEMMA 88. There is a neighbourhood e ∈ U2 ⊂ U1 such that log(H ∩U2) ⊂ h and hence
log(H ∩U2) = h∩ log(U2).

PROOF. If the claim fails we can find for each neighbourhood U ⊂U1 an element h ∈ H ∩U
such that log(hn) /∈ h, and hence a sequence hn→ e with this property. Writing hn = exp(Xn)exp(Yn)
for Xn ∈ h, Yn ∈ k we have Xn,Yn→ 0. Since Xn,Yn are unique we have Yn 6= 0 (otherwise we’d have
hn = exp(Xn) so loghn ∈ h). Now exp(Yn) = exp(−Xn)hn ∈ H and taking logarithms we get that

Yn

|Yn|
=

log(exp(−Xn)hn)

|log(exp(−Xn)hn)|
.

These belong to the unit sphere in k which is compact, so let Y be any subsequential limit. Then
Y ∈ h2 = h by construction, but also Y ∈ k and the subspaces are disjoint, a contradition.

Now for any neighbourhood U2 if log(H ∩U2) ⊂ h then clearly log(H ∩U2) ⊂ h∩ log(U2),
but conversely if X ∈ h∩ log(U2) then exp(X) ∈ H ∩U2 so h∩ log(U2)⊂ log(H ∩U2) and we get
equality. �

• It follows that h = R log(H ∩U2) since h∩ log(U2) is open in h, giving us a third recon-
struction of h.

Step 3: H is a submanifold with tangent space h.

THEOREM 89 (Cartan 1930). Let H < G be a closed subgroup. Then H is a submanifold of G,
hence a Lie subgroup.

PROOF. By continuity of the multiplication on G there is a neighbourhood e ∈U3 such that
U−1

3 U3U3⊂U2 (in particular U3⊂U2). Let V3 = log(U3∩H) and for h∈H let Uh = h(U3∩H) and
let ϕh : Uh→ h be given by ϕh(x) = log(h−1x). This is an atlas on H: suppose that x ∈Uh1 ∩Uh2 .
The inverse of the first chart is the map V3 3 X 7→ h1 exp(X) and applying the first chart we get(

ϕh2 ◦ϕ
−1
h1

)
(X) = log

(
h−1

2 h1 exp(X)
)

= log
(
((x−1h2)

−1 (x−1h1
)

exp(X)
)
.

Now since x∈Uh1∩Uh2 we have x−1h1,x−1h2 ∈U3 so
(
((x−1h2)

−1 (x−1h1
)

exp(X)
)
∈U−1

3 U3U3⊂
U2 and we conclude that ϕh2 ◦ϕ

−1
h1

: h→ h is smooth. �

REMARK 90. By the construction of h1 we see that h is the Lie algebra of H, in particular a
Lie subalgebra of G.

COROLLARY 91. Let f : G→ H be a continuous homomorphism of Lie groups. Then f is
smooth. (“The category of Lie groups is a full subcategory of the category of topological groups”)

PROOF. Let Γ f = {(g, f (g)) | g ∈ G} ⊂ G×H be the graph of f . Then Γ f is the image of a
group homomorphism G→ G×H hence an abstract subgroup. It is closed by the continuity of f :
if (gn, f (gn))→ (g,h) in G×H then gn→ g and therefore f (gn)→ f (g) so h= f (g) so (g,h)∈ Γ f .
By Cartan’s Theorem 89 Γ f is a smooth submanifold, and it follows that f is smooth. �
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The argument of the above theorem also gives the following

THEOREM 92. Let H be a closed connected subgroup of G. Then H G has a unique manifold
structure such that π : H\G→G is smooth. Furthermore, the regular action of G on H\G is a Lie
group action.

PROOF. Decompose g= h⊕ k as before, giving us maps logh : V1→ h, logk : V1→ k inverse to
X +Y 7→ exp(X)exp(Y ). Choose U such that U−1UU ⊂U1. For g ∈ G define a chart (π(U)g,ϕg)

by ϕg(Hx) = logk(xg−1) ... �

2.4.2. Topological applications: covering groups.

LEMMA 93. A Lie group homomorphism is a covering iff its derivative is an isomorphism

PROOF. A covering map is a local diffeo, hence gives isom of Lie algebras. Conversely sup-
pose de f is isomorphism. By homogeneity d f is injective at each point so f is a local diffeomor-
phism. The kernel K = Ker( f ) is a closed subgroup which is zero-dimensional (lie algebra {0}!)
hence discrete. Let U ⊂G be a small enough neighbourhood so that its translates by K are disjoint
and such that f �U is a diffeo. Then f−1 ( f (U))' K×U and the map is a cover. �

THEOREM 94. Let d f : g→ h be a Lie algebra homomorphism. If G is simply connected and
H is connected then this lifts to f ∈ Hom(G,H).

PROOF. Let Γd f = {(X ,d f (X)) : X ∈ g} ⊂ g⊕h be the graph of d f , which is a Lie subalgebra
of g⊕ h = Lie(G×H). Let Γ f ⊂ G×H be the corresponding Lie subgroup. The projections
π1 : G×H → G, π2 : G×H → H are Lie group homomorphism, and set π = π1 �Γ f . Then dπ =
(dπ1) �Γd f : Γd f → g is an isomorphism, so π : Γ f → G is a covering map. Since G is simply
connected π is an isomorphism, and π2 ◦ π−1 : G→ H is then Lie group homomorphism with
graph Γ f and hence differential dπ . �

We note the following without proof.

THEOREM 95 (Ado). Every finite-dimensional Lie algebra has a faithful representation into
gln(R).

COROLLARY 96. Every Lie algebra is the Lie algebra of some group.

EXERCISE 97. Let S(G) be the lattice of closed subgroups of a compact Lie group G. Then
the map S(G)→ ω×ω given by H 7→ (dimH,#π0(H)) is order-preserving for the lexicographic
order. Conclude that there is no infinite descending chain of closed subgroups of G. Give a
counterexample when G is non-compact.

2.5. The adjoint representation

EXAMPLE 98. Let (Rt f )(x) = f (x+ t) be the translation operator for functions on R. Then
Taylor expansion can be viewed as Rt f = ∑

∞
k=0

tk

k!
dk f
dxk = exp

(
t d

dx

)
· f .

LEMMA 99 (Infinitesimal translation). The operator Rexp(tX) on C∞(G) has the Taylor expan-

sion ∑
∞
k=0

tk

k!X
k in the sense that for all N ≥ 0 and compact Ω⊂ G we have for g ∈Ω

f (gexp(tX)) =
(
Rexp(tX)( f )

)
(g) =

N

∑
k=0

tk

k!

(
Xk f

)
(g)+O f ,Ω

(
|tX |k+1

)
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PROOF. Since both Rexp(tX) and the operators Xk commute with left translations it’s enough
to prove this at g = 1. This is the Taylor expansion with remainder of the smooth function t 7→
f (exp(tX)) using the fact that d

dt f (exp(tX)) = (X f )(exp(tX)) which we can iterate. �

REMARK 100. A Lie group has a unique real analytic structure and then for f ∈ Cω(G) we
have f (gexp(tX)) = ∑

∞
k=0

tk

k!

(
Xk f

)
(g).

COROLLARY 101. In the same sense we have exp(tX)exp(tY )= exp
(
t(X +Y )+ 1

2t2 [X ,Y ]+O(t3)
)
.

PROOF. log(exp(tX)exp(tY )) is a smooth function (−ε,ε)→ g and we have

Rexp(tX)Rexp(tY ) =

(
1+ tX +

1
2

t2X2 +O(t3)

)(
1+ tY +

1
2

t2Y 2 +O(t3)

)
= 1+ t (X +Y )+

1
2

t2 (X2 +Y 2 +XY
)
+O(t3)

= 1+ t (X +Y )+
1
2

t2 (X +Y )2 +
1
2

t2 (XY −Y X)+O(t3)

= 1+ t
(

X +Y +
1
2

t [X ,Y ]
)
+

1
2

t2
(

X +Y +
1
2

t [X ,Y ]
)2

+O(t3) .

�

OBSERVATION 102. We see that in exponential coordinates the Lie bracket exactly gives the
deviation of the multiplication law of G from the additive law of g (and fully determines the rest of
the Taylor expansion!)

COROLLARY 103. Simlarly we have

exp(tX)exp(sY )exp(−tX) =

(
1+ tX +

1
2

t2X2 +O(t3)

)(
1+ sY +

1
2

s2Y 2 +O(s3)

)(
1− tX +

1
2

t2X2 +O(t3)

)
= 1+ tY + tsXY − stY X− t2X2 + t2X2 +

1
2

s2Y 2 +O(s3, t3,s2t, t2s)

= 1+ sY + ts [X ,Y ]+
1
2

s2Y 2 +O(s3, t3,s2t, t2s) .

DEFINITION 104. Let g∈G. Then Adg : G→G given by Adg(x)= gxg−1 is an automorphism,
in particular a group homomorphism. We also write Adg for its derivative, Adg : g→ g.

LEMMA 105. Ad: G→ GL(g) is a smooth representation.

DEFINITION 106. Write ad : g→ End(g) for the derivative of the adjoint representation.

THEOREM 107. adX ·Y = [X ,Y ].

PROOF. By Corollary 103we have

Adexp(tX) exp(sY ) =

More precisely, this means that for f ∈C∞(G),

〈d fe,adX ·Y 〉=
d
ds

∣∣
s=0

〈
d fexp(sY ),Xe · (exp(sY ))∗−Xexp(sY )

〉
.
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Now
d
ds

∣∣
s=0

〈
d fexp(sY ),Xe · (exp(sY ))∗

〉
=

d
ds

∣∣
s=0

〈
d(Rexp(sY ) f )e,Xe

〉
=

〈
d
ds

∣∣
s=0d (g 7→ f (gexp(sY )))e ,Xe

〉
=(XY f )(e)

and
d
ds

∣∣
s=0

〈
d fexp(sY ),Xexp(sY )

〉
= (Y X f )(e)

so we are done. �

COROLLARY 108. ad : g→ End(g) is a Lie algebra representation: ad[X ,Y ] = [adX ,adY ].

PROOF. This follows immediately from the Jacobi identity. �

COROLLARY 109. Let H < G be connected Lie groups. Then H is normal iff h is a Lie ideal.

PROOF. If H is normal then H is Ad-stable hence h is Ad-stable hence h is ad-stable. Con-
versely, for X close enough to the origin we have exp(adX) = ∑

∞
k=0

1
k! (adX)

k. Now if h is adX -
stable it follows that it is also exp(adX)-stable and hence AdexpX -stable. But by the group-algebra
correspondence this means H is AdexpX -stable. Since the small X generate G we are done. �

COROLLARY 110. Let G be connected. Then Z(G) = ker(Ad: G→ GL(g)).

PROOF. g ∈G is central iff for all small enough X , gexpXg−1 = expX iff exp(Adg X) = expX
iff Adg X = X . �

COROLLARY 111. Let G be connected. Then g is abelian iff G is abelian iff exp: g→ G is a
surjective group homomorphism.

PROOF. If adX = 0 for all X then exp(adX) = Id for all X so a neighbourhood of the identity
is contained in Ker(Ad). If G is abelian let X ,Y ∈ g. Then t 7→ exp(tX)exp(tY ) is a group ho-
momorphism R→ G. Since its derivative at t = 0 is X +Y we conclude that exp(tX)exp(tY ) =
exp(t(X +Y )). Now setting t = 1 shows that exp is a homomorphism, and since the image con-
tains a generating set it’s surjective. Finally, if exp is a surjective homomorphism then its image G
is abelian. �

THEOREM 112. A connected abelian Lie group is of the form Ra×Tb. Its exponential map is
a covering map.

PROOF. Ker(exp) is a discrete subgroup of Rn. �

EXERCISE 113. A compact abelian Lie group has the form Tb×A where A is a finite abelian
group.
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CHAPTER 3

Compact Lie groups

3.1. Linearity

As an application of our representation theory of compact groups we get:

THEOREM 114. Every compact Lie group has a faithful finite-dimensional representation.
Equivalently, every compact group is isomorphic to a closed subgroup of some U(n).

PROOF. The representation of G on L2(G) is faithful. By Peter–Weyl it follows that
⋂

π∈Ĝ Ker(π)=
{e}, and since there is no infinite descending sequence of closed subgroups finitely many irre-
ducibles suffice. �

REMARK 115. Closed linear groups are, in fact, algebraic (i.e. the zero set of the polynomials
that vanish on them), as are the continuous homomorphisms between them.

3.2. Characters and cocharacters of tori

Let Rn/Zn, Rm/Zm be tori. We’d like to study Hom(Rn/Zn,Rm/Zm). The cases m = 1 (char-
acters) and m = n (automorphisms) are particularly important.

First, let f : Zn→ Zm be a group homomorphism. Extending scalars gives a homomorphism
fR = f ⊗Z 1 : Zn⊗R→ Zm⊗R. Since fR (Zn) = f (Zn)⊂ Zm, fR descends to a homomorphism
f̄ : Rn/Zn→ Rm/Zm.

LEMMA 116. The map f 7→ f̄ is an isomorphism Hom(Zn,Zm)→ Hom(Rn/Zn,Rm/Zm).

PROOF. We need to construct the inverse map. For this let expn : Rn→ Rn/Zn be the quotient
map, which is also the exponential map of this commutative Lie group with kernel Zn. Then
given f̄ ∈ Hom(Rn/Zn,Rm/Zm) consider the linear map d f̄ ∈ Hom(Rn,Rm). The usual identity
f̄ (expn X) = expm

(
d f̄ (X)

)
here reads expm ◦d f = f̄ ◦expn, in other words that d f̄ (Zn)⊂Zm. The

desired element of Hom(Zn,Zm) is them f = d f̄ �Zn . �

COROLLARY 117. Aut(Tn)'Mn(Z)× = GLn(Z). In particular, Aut(Rn/Zn,Rm/Zm) is dis-
crete.

COROLLARY 118. T̂n = Hom
(
Tn,S1) = {e(k · x)}k∈Ẑn where Ẑn = Hom(Zn,Z) is the dual

lattice, and e(z) = e2πiz.

PROOF. z 7→ e(z) is an isomorphism R/Z→ S1. �

LEMMA 119. Tori are topologically generated by single elements.

PROOF. Let {1}∪{ξi}n
i=1 ⊂ R be linearly independent over Q. Then ξ is such an element. In

fact (Weyl equidistribution) every orbit
{

x+ jξ
}∞

j=1
is equidistributed in the torus. �
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COROLLARY 120. Tn×Cm is also topologically generated by a single element.

PROOF. Let ξ be an irrational element as above, and let g ∈Cm be a generator. Then
(

ξ ,g
)

is
a generator. �

3.3. The exponential map of a compact group

From now on let G be a compact connected Lie group, g its Lie algebra, and let Ad: G→GL(g)
be the adjoint representation. Since G is compact we may fix a G-invariant inner product (and
associated Euclidean norm) on g.

LEMMA 121. A connected compact Lie group has a bi-invariant Riemannian metric

REMARK 122. The map g 7→ g−1 is an isometry of this metric. In other words, we have a
symmetric space. (c.f. PS ??)

PROPOSITION 123. Fix a bi-invariant metric on G. Then the Riemannian and Lie exponential
maps agree.

PROOF. Let γ(t) be a Riemannian geodesic based at the origin. Then t 7→ γ(t0 + t), t 7→
γ(t0)γ(t) and t 7→ γ(t)γ(t0) are also geodesics (because the group acts by isometries) which meet
at t = 0 and have the same derivative at that time. It follows that γ(t0 + t) = γ(t0)γ(t), that is that
the geodesic is a one-parameter subgroup. �

COROLLARY 124. The exponential map of a connected compact Lie group is surjective.

3.4. Maximal Tori

Fix a compact connected Lie group G.

3.4.1. Tori. A torus in G is a subgroup T of G isomorphic to Tn for some n, equivalently a
compact connected commutative subgroup. A maximal torus is a torus not properly contained in
another torus, equivalenty a maximal connected commutative subgroup (taking the closure shows
that such a subgroup is necessarily compact). If T ⊂ T ′ are distinct tori then by connectedness
dimT < dimT ′ ≤ dimG, so each torus is contained in a maximal torus.

LEMMA 125. Every g ∈ G is contained in a torus, hence in a maximal torus.

PROOF. Suppose g = exp(X) for some non-zero X ∈ g. Then {exp(tX)}t∈R is a connected
commutative subgroup of G. Its closure is still connected and commutative, hence a torus. �

LEMMA 126. Let T be a torus in G, and let t be its Lie algebra. Then:
(1) ZG(T ) is connected.
(2) ZG(t) = ZG(T )
(3) LieZG(T ) = Zg(t).
(4) NG(T )◦ = ZG(T ).

PROOF.
(1) Let g ∈ ZG(T ) and let S = 〈g,T 〉 be the closed subgroup generated by g,T . Then S is a

closed commutative subgroup, so its connected component is a torus S0 ⊃ T . The image
of g is a topological generator of S/T hence of the finite group S/S0, so this group is
cyclic and S ' TdimS× S/S0 is topologically generated by a single element h, and any
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torus containing h contains S. It follows that ZG(T ) is the union of the tori containing T
and hence is connected.

(2) If g ∈ ZG(T ) then Adg ∈ Aut(T ) being trivial means that Adg ∈ Aut(t) is trivial. Con-
versely, the exponential map of T is surjective and for any H ∈ t and g ∈ ZG(t) we have

Adg (expH) = exp(Adg H) = expH .

(3) If X ∈ Zg(t) then for any s ∈ R, Adexp(sX) �t= exp(adsX �t) = exp(0) = Id and hence
exp(sX) ∈ ZG(t) and X ∈ Lie(ZG(t)). Conversely, suppose that Adexp(sX) ∈ ZG(t) for all
s. Differentiating with respect to s we get that adX �t= 0 that is that X ∈ Zg(t).

(4) Finally, let NG(T ) act on T by conjugation. This gives a continuous homomorphism
NG(T )→ Aut(T )' GLr(Z). Since the latter group is discrete, the connected component
is in the kernel and hence NG(T )◦ ⊂ ZG(T ). Since ZG(T )⊂ NG(T ) is connected we also
have the reverse inclusion.

�

3.4.2. Weyl groups. Now let T be a maximal torus of G.

LEMMA 127. We have NG(T )◦ = ZG(T ) = T

PROOF. ZG(T ) is connected. Then any g ∈ ZG(T ) belongs to some torus S ⊂ ZG(T ). If g /∈ T
then ST would be a torus properly containing T . �

DEFINITION 128. The analytic Weyl group (or just “Weyl group”) of G is W (G : T ) def
= NG(T )/ZG(T )=

NG(T )/T .

THEOREM 129. All maximal tori of G are conjugate.

PROOF. Let S,T be maximal tori and let X ∈ LieS, Y ∈ LieT be generic elements (that is
expX ,expY are topological generators of the respective groups). Equip g = LieG with a G-
invariant inner product, and let g ∈ G minimize

f (g) = ‖Ad(g)X−Y‖2 .

Expressing f as:

f (g) = ‖Ad(g)X‖2 +‖Y‖2−2〈Ad(g)X ,Y 〉

= ‖X‖2 +‖Y‖2−2〈Ad(g)X ,Y 〉

we see that we are minimizing 〈Ad(g)X ,Y 〉. Suppose the minimum is at g0, and consider the
derivative there. For every Z ∈ g the derivative in the direction Z is:

〈adZ · (Ad(g0)X) ,Y 〉 .

Letting X0 = Ad(g0)X we see that

0 = 〈adZ · (Ad(g0)X) ,Y 〉
= 〈[Z,X0] ,Y 〉=−〈[X0,Z] ,Y 〉
=−〈adX0 ·Z,Y 〉
= 〈Z,adX0 ·Y 〉= 〈Z, [X0,Y ]〉
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where we use that in every unitary representation π , dπ(X) is anti-hermitian. Since Z is arbitrary,
we see that [X0,Y ] = 0. This means that X0 ∈ Zg(Y ) = t. But since X0 is generic for g0Sg−1

0 we
conclude that g0Sg−1

0 = T . �

LEMMA 130. Let the compact group G act on the Hausdorff space X. Then
(1) Every open neighbourhood of an orbit contains a G-invariant open neighbourhood.
(2) The quotient G\X is Hausdorff.

PROOF. Given an open subset U ⊂ X containing an orbit Gx let V = {y ∈ G | Gy⊂U}, which
is clearly G-invariant, contained in U , and contains Gx. To see that V is open let {zn}n∈N be a net
in the complement X \V converging to z ∈ X . By hypothesis for each zn we have gn ∈ G such that
gnzn /∈U . Since G is compact there is a subnet M ⊂ N such that {gn}n∈M converges to g ∈ G. By
the continuity of the group action the net {gnzn}n∈M converges to gz and since U is closed we have
gz /∈U so z /∈V . It follows that X \V is closed, so V is open.

Now let x,y ∈ X have disjoint G-orbits. Since X is Hausdorff and the orbits Gx,Gy are com-
pact there are disjoint neighbourhoods Gx ⊂Ux, Gy ⊂Uy. By the first part we have G-invariant
neighbourhoods Gx ⊂Vx ⊂Ux and Gy ⊂Vy ⊂Uy. The images of Vx,Vy in G\X are then open and
disjoint, thus separate the images of x,y. �

COROLLARY 131. We have a homomorphism T/W = G/Ad(G), hence an isomomorphism
C(T )W =C(T/W ) =C (G/Ad(G)) =C(G)AdG.

PROOF. The continuous inclusion T ↪→G induces a continuous map T/W→G/Ad(G), which
is surjective since every g ∈ G is contained in a maximal torus which is conjugate to T , so T
contains representatives for all conjugacy classes.

To see that the map is injective let t, t ′ ∈ T be conjugate in G, say gt ′g−1 = t. Then t ∈ gT g−1,
and it follows that T and gT g−1 are maximal tori in ZG(t). We therefore have z ∈ ZG(t)◦ such that
zgT g−1z−1 = T , that is zg ∈ NG(T ). We also have zgt ′g−1z−1 = ztz−1 = t.

Finally the spaces T/W and G/Ad(G) are compact Hausdorff spaces as quotients of compact
spaces, and Hausdorff by the Lemma. Thus the continuous bijection between them is a homeo-
morphism. �

REMARK 132. The situation for noncompact groups is much more complicated.

3.4.3. Example: three-dimensional groups. Let G = SU(2) act on C2. The action on S3 is
simply transitive, so SU(2) ' S3; in particular it is simply connected. Now Z(SU(2)) = {±I} ,so
the groups it covers are SU(2) and its image by the adjoint representation.

LEMMA 133. The maximal tori are the maximal subalgebras of so(3).

PROOF. Let t = Span
(

−1
1

)
. Then the action of t on its orthogonal complement in so(3)

is irreducible. �

PROPOSITION 134. Let G be a three-dimensional connected compact Lie group. Then either
G is abelian or G covers SO(3).

PROOF. Consider the adjoint representation Ad: G→ GL(g). Choosing a G-invariant inner
product on g, the image lies in its orthogonal group, in fact in SO(3) since G is connected. The
image of this map is a closed subgroup of SO(3); if it is proper then by the Lemma it is either a one-
dimensional torus or the trivial group. But since g is non-commutative we cannot have g/Zg ' R
nor g/Zg ' {0}. �
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3.5. Roots and weights

3.5.1. Weights. Let T be a torus. Let (π,V ) be a finite-dimensional representation of T on a
complex vector space. By the theory for general compact groups we have a direct sum decompo-
sition

V =⊕
χ∈T̂Vχ .

Since T is commutative, T̂ =Homcts
(
T,S1) and Vχ = {v ∈V | π(t)v = χ(t)v}. We call

{
χ ∈ T̂ |Vχ 6= {0}

}
the exponential weights of V , Vχ the weight spaces.

We now find an alternative parametrization of T̂ . For this let t be the Lie algebra, exp: t→ T
the exponential map. We have seen that exp is also the universal covering map of T ; we write Λ

for its kernel and call it the integral lattice.
Identify the Lie algebra of S1 with R so that the exponential map is e(z) = e2πiz. For a char-

acter χ ∈ T̂ write α = dχ ∈ t∗ = Hom(t,R) for its derivative, giving the following commutative
diagram:

t
exp
//

α

��

T

χ
��

R e // S1

Now χ ◦ exp vanishes on Λ, and it follows that α(Λ)⊂ ker(e) = Z. The converse is also clear, so

CONCLUSION 135. χ ∈ T̂ iff α ∈ Λ∗ = {ν ∈ t∗ | ν(Λ)⊂ Z} ' Hom(Λ,Z).
We call Λ∗ the weight lattice of T , and from now on we index weight spaces with the weights

α ∈ Λ∗ rather than the corresponding exponential weights χα ∈ Hom
(
T,S1). Explicitely given

α ∈ Λ∗ and H ∈ t we have χα (expH) = e2πiα(H).

3.5.2. Complexification. Suppose now that T acts on a real vector space V . Since every non-
trivial character of T takes complex values, V realizes no character of T , and we consider the
complexification VC = C⊗RV .

The complex conjugation operator z 7→ z̄ of C then extends to an operation v 7→ v̄ on VC (fixing
the image of V in VC), and also EndC(VC) (fixing the image of EndR(V ) there).

EXERCISE 136. A (C-linear) subspace W ⊂ VC is of the form UC for an (R-linear) subspace
U ⊂V iff W =W .

The T -action on V then extends to a T -action on VC, so we may write VC =
⊕

α∈Λ∗Vα . Then
for any H ∈ t and v ∈Vα we have

π (exp(H)) · v = e2πiα(H)v .

Taking complex conjugates it follows that

π (exp(H)) · v̄ = e−2πiα(H)v̄ ,

in other words that v̄ ∈ V−α . We conclude that α 6= 0 is a weight iff −α is a weight and that
V̄α =V−α .
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3.5.3. Roots. Let G be a connechted compact Lie group and fix a maximal torus T ⊂ G.

DEFINITION 137. The rank of G is the integer rkG = dimT . The semisimple rank of G is the
rank of G/Z(G), in other words the integer dimT −dimZ(G).

DEFINITION 138. The real roots of G (with respect to T ) are the non-zero weights of the
adjoint action of T on g. Write Φ = Φ(G : T ) for the set of roots.

The weight space g0 corresponding to the weight 0 (that is, the space of T -fixed vectors) is self-
conjugate, hence is the complexification of the space of T -fixed vectors in g. Since ZG(T ) = T we
see that this is exactly tC so we have

gC = tC⊕
⊕
α∈Φ

gα .

REMARK 139. We will now eventually compute the structure of g from this decomposition.

Let H ∈ t, Xα ∈ gα . We then have

Ad(exp(tH)) ·Xα = e2πiα(H)Xα .

Differentiating with respect to t we conclude that

adH ·Xα = 2πiα(H)Xα .

In other words, gα is a joint eigenspace of {adH}H∈t where the eigenvalue of H is 2πiα(H).

DEFINITION 140. Given a real root α , the map H 7→ 2πiα(H) will be called the associated
complex root. We denote both by α , but it should be clear from context which is intended. Note
that the real root is an element of t∗R while the latter is a purely imaginary element of t∗C. Generaly
the real roots are useful when studying representation theory and the “root system”. The complex
roots are useful when studying structure theory, that is in computing commutators in g. Recall that
we also have an associated exponential root χα : T → S1 such that Adt ·Xα = χα(t)Xα whenever
t ∈ T , Xα ∈ gα .

LEMMA 141. For α,β ∈ Λ∗,
[
gα ,gβ

]
⊂ gα+β .

PROOF. Let H ∈ t, Xα ∈ gα , Xβ ∈ gβ . Then by the Jacobi identity (writing α for the complex
root) [

H,
[
Xα ,Xβ

]]
=−

[
Xα ,
[
Xβ ,H

]]
−
[
Xβ , [H,Xα ]

]
=− [Xα ,−β (H)Xα ]−

[
Xβ ,α(H)Xα

]
= (β (H)+α(H))

[
Xα ,Xβ

]
= ((α +β )(H))

[
Xα ,Xβ

]
.

�

We are now ready to begin studying structure theory in earnest. The following argument is
taken from [?, Thm.\{} V.1.5]

THEOREM 142. If rkG = 1 then G is either SO(3) or SU(2).

PROOF. We begin with two preliminary observations
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(1) Given β ∈Φ let Xβ ∈ gβ . Then X−β = X̄β ∈ g−β and we may consider Hβ =
[
Xβ ,X−β

]
. If

Hβ were zero Span
{

Xβ ,X−β

}
⊂ gC would be a two-dimensional commutative subalgebra

of gC. Since this subspace is stable by complex conjugation it would be the complexi-
fication of a two-dimensional commutative subalgebra of g, and such subalgebras don’t
exist when rkG = 1. It follows that Hβ 6= 0 in such circumstances. We also note that
H̄β =

[
X̄β , X̄−β

]
=
[
X−β ,Xβ

]
=−Hβ . It follows that Hβ ∈ itR, and that iHβ ∈ t.

(2) Since dimR t= 1, for any non-zero H ∈ t every real root α is determined by the non-zero
real number α(H), and we order the roots by these numbers.

In particualr let β be the smallest positive root (with respect to some choice of H), choose Xβ

(arbitrarily in gβ ) and X−β as above and let

V = CX−β ⊕ tC⊕
⊕
α>0

gα .

We then have:
(1) V is adXβ

-invariant, since adXβ
·X−β ⊂ g0, and for α ≥ 0 adXβ

·gα ⊂ gα+β and α +β ≥ 0.
(2) V is adX−β

-invariant, since adX−β
·X−β = 0, adX−β

·tC ⊂CX−β and for any α > 0 we have
α ≥ β so adX−β

·gα ⊂ gα−β with α−β ≥ 0.

Since the adjoint representation is a Lie algebra representation (Corollary 108), adHβ
=
[
adXβ

,adX−β

]
so V is also stable by adHα

. This being a commutator in EndC(V ) we get that TrC
(

adHβ

∣∣V)= 0.
On the other hand, we can compute this trace via the eigenspace decomposition:

TrC
(

adHβ

∣∣V)= 2πiβ (Hβ )+0+ ∑
α>0

dimC gα ·2πiα(Hβ ) .

Dividing by 2π and rearranging the terms we conclude that(
dimC gβ −1

)
β
(
iHβ

)
+ ∑

α>β

dimC gα ·α(iHβ ) = 0 .

Now iHβ ∈ t is a non-zero multiple of H making the numbers β (iHβ ),α(iHβ ) are either all positive
or all negative. Further, the coefficients

(
dimC gβ −1

)
,dimC gα are all non-negative. It follows

that dimC gβ = 1 (hence also that dimC g−β = 1) and that dimC gα = 0 if α > β , or in other words
that gC = g−β ⊕ tC⊕gβ is three dimensional. �

REMARK 143. It was shown along the same lines in the Lie Algebras course that a complex
semisimple Lie algebra of rank 1 is 2C.

3.5.4. The algebraic Weyl group. Continuing with our general group G and maximal torus
T , let α ∈Φ and let uα = ker(α), a codimension-1 subspace of t, Gα = ZG (uα).

LEMMA 144. uα is the Lie algebra of the kernel of the exponential root χα . In particular,
exp(uα) is a closed subgroup of T of codimension 1.

REMARK 145. That kernel need not be connected (for example, the kernel of the root of SU(2)
consists of the disconnected centre). We will later see that this kernel has at most two connected
components.

PROPOSITION 146. Gα is a connected subgroup of semisimple rank 1. Moreover:
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(1) dimC gα = dimC g−α = 1 and ±α are the only roots proportional to α .
(2) W (Gα : T )'C2.
(3) Let sα ∈W (Gα : T )⊂W (G : T ) be the non-trivial element. Then sα ∈ GL(t) is a reflec-

tion in the hyperplane uα .

PROOF. Gα centralizes the Lie algebra of a torus, so by Lemma 126 it is connected. Since
T ⊃ exp(uα) is commutative, we see that T ⊂ Gα so that T is a maximal torus there as well.
By construction, uα ⊂ ZLieGα

so the semisimple rank is at most 1. It is not zero since Gα is
non-commutative: its lie algebra contains both t and ℜ(gα ⊕g−α), and these subspace do not
commute.

Set Ḡα = Gα/Ker χα , and let T̄ = T/Ker(χα), a maximal torus there. This is a connected
group of rank 1, hence isomorphic to one of SU(2),SO(3).

(1) Let β be a root proportional to α . Then ±β (H) = 0 for any H ∈ uα and it follows
that ℜ

(
gβ ⊕g−β

)
⊂ LieGα and hence that gβ ⊂ LieCGα . The direct sum over all these

subspaces is disjoint from uα so they all inject into LieCGα/uαC. Being the complexified
Lie algebra of Ḡα it is three-dimensional and it follows that dimC gα = dimC g−α = 1 and
that there are no other roots proportional to α .

(2) If g ∈Gα normalizes T then its image in Ḡα normalizes its maximal torus T̄ . Conversely,
if the image of g normalizes T̄ then for any t ∈ T we have gtg−1 ∈ T Ker(χα) = T so
g normalizes T . It follows that the quotient map induces an isomorphism of the Weyl
groups W (Gα ;T )'W

(
Ḡα : T̄

)
'C2.

(3) Since uα is central in LieGα it is fixed by any element of Gα . The non-trivial element of
W
(
Ḡα : T̄

)
acts by inversion on T̄ , so sα acts by inversion on t/uα , that is by a reflection

in uα on t.
�

REMARK 147. We call a root reduced if it is not a multiple of another root, and we see that
here every root is reduced.

Since NGα
(T )⊂ NG(T ) we can think of sα ∈ NGα

(T )/T as an element of W = NG(T )/T . This
element is a reflection on t fixing uα . Having equipped g with an inner product, the Weyl group
acts by isometries on t so sα must be the orthogonal reflection in uα . We note that W also acts on
the dual space t∗ fixing the dual lattice Λ∗ and the roots Φ and that sα(α) =−α .

DEFINITION 148. Call sα the root reflection associated to the root α . We call the subgroup of
the Weyl group generated by the root reflections the algebraic Weyl group.

COROLLARY 149. Let z=Z(g) be the Lie algebra of the centre of G and let V = {ν ∈ t∗ | ν(z) = 0}=
(t/z)∗. Then(V,Φ) is a root system, in that it has the following properties:

(1) Φ⊂V is a finite set not containing {0}.
(2) SpanRΦ =V .
(3) For every α ∈ Φ, the reflection sα in the hyperplane perpendicular to α preserves Φ

setwise.

EXAMPLE 150. Let G = SU(3). Let T = {diag(e(iθ1),e(iθ2),e(iθ3)) | θ1 +θ2 +θ3 = 0}.
This is a torus (isomorphic to (S1)2). To see that it is maximal and compute its Weyl group,
restrict the standard representation of SU(3) on C3 to T . The coordinate axes are exactly the irre-
ducible subrepresentations and they are non-isomorphic (each is one copy of a different character).
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It follows that every w ∈ NG(T ) must permute these subspaces and every t ∈ ZG(T ) must act on
each subspace separately. But these subspaces are irreducible, so each t ∈ ZG(T ) must be diagonal,
and hence an element of t. It follows that T = ZG(T ) so it is a maximal torus, that NG(T ) is the
group of signed permutations, and that W (G : T ) = NG(T )/T ' S3.

Differentiaing the definition G=
{

g ∈ SL3(C) | g†g = Id
}

we see that g=
{

X ∈3 C | X† +X= 0
}

that is the set of anti-Hermitian matrices of trace zero. Since every Y ∈3 C can be uniquely written
in the form

Y =
Y +Y †

2
+

Y −Y †

2
=

Y −Y †

2
+ i

Y +Y †

2i
∈ g⊕ ig

we see that gC '3 C. It is also clear that t= {idiag(θ1,θ2,θ3) | θ1 +θ2 +θ3 = 0}.
Now for i 6= j let E i j ∈3 C⊂M3(C) be the matrix with zeroes everywhere except that

(
E i j)

i j =

1. Then for H = idiag(θ1,θ2,θ3) we have adH ·E i j = i(θi−θ j)E i j so the roots of G are the maps
ei j(H) = θi−θ j.

To find the Weyl chamber we note that the Frobenius, or Hilbert–Schmidt norm on M3(C) is
U(3)-invariant. In terms of this norm (and removing the factor of i) an orthonormal basis of t is
given by 1√

6
diag(1,1,−2) , 1√

2
diag(1,−1,0). Now for

H =
x√
6

diag(1,1,−2)+
y√
2

diag(1,−1,0)

we have

e12(H) =
√

2y

e23(H) =

√
3√
2

x− 1√
2

y

e13(H) =

√
3√
2

x+
1√
2

y .

In the coordinates
(

x
y

)
we therefore have:

u12 =

(
0
1

)⊥
, u23 =

(√
3/2
−1/2

)⊥
, u13 =

(√
3/2

+1/2

)⊥
.

These three lines are the lines at slopes π

3 and 2π

3 through the origin, dividing R2 into six identical
sectors. We call these sectors Weyl chambers, the lines walls, and note that S3 (which has order 6)
acts on the six chambers simply transitively.

EXERCISE 151. Do the same for SU(n), SO(2n), SO(2n+1), Sp(n).

3.6. Weyl chambers

3.6.1. Weyl chambers. The complement of hyperplane uα consists of two half-spaces: the
sets {H ∈ t | α(H)> 0} and {H ∈ t | α(H)< 0}. It follows that the connected components of

t\
⋃

α∈Φ

uα

are interections of half-spaces, hence convex cones.
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DEFINITION 152. These connected components are called the (open) Weyl chambers in t. We
call uα a wall of the chamber C if dim

(
uα ∩C̄

)
= rkG− 1. More generally, a (codimension-k-)

facet of the Weyl chamber C is any non-empty set of the form F =
(
uα1 ∩·· ·uαk ∩C̄

)◦ where the
interior is taken as a subset of the vector space uα1 ∩ ·· ·uαk . We note that the closure C̄ is the
disjoint union of the facets of C (where C itself is the unique facet of codimension zero).

Equivalently, for each f : Φ→{±,0}we have a facet Ff = {H ∈ t | ∀α ∈Φ : sgn(α(H)) = f (α)}
(excluding those f for which Ff is empty) with open chambers corresponding to functions valued
in {±}.

REMARK 153. Note that we are studying the Weyl chambers in t, rather than the Weyl cham-
bers in t∗ where the root system lies.

Given a chamber C, let ∆ be the set of roots α such that uα is a wall of C and such that α is
positive on C (note that uα = u−α and that exactly one of α,−α is positive on C).

LEMMA 154. The chamber is exactly the set bounded by the walls: C = {H ∈ t | ∀α ∈ ∆ : α(H)> 0}.
PROOF. See PS7. �

OBSERVATION 155. The Weyl group acts on G by automorphisms while fixing T . It therefore
permutes the roots, hence their kernels, and hence the Weyl chambers.

PROPOSITION 156. The group W ′ =
〈
{sα}α∈∆

〉
acts transitively on the set of Weyl chambers.

PROOF. Fix x ∈ C; let C′ be any other chamber and let y ∈ C′. Note that (being equivalence
classes for an equivalence relation) if two chambers intersect they are equal, to it suffices to show
that wy ∈ C for some w ∈W ′. For this choose w such that ‖wy− x‖ is minimal. If wy /∈ C then
by Lemma 154 above, there is a wall uα such that x,wy are on opposite sides of α . Decomposing
x,wy into their components along and perpendicular to uα it is then clear that

‖sα(wy)− x‖< ‖wy− x‖ ,
which is a contradiction since sαw ∈W ′. �

PROPOSITION 157. The group W acts simply transitively on the chambers.

PROOF. We already know the action is transitive. Suppose w ∈ NG(T ) stabilizes the chamber
C. Since W is finite, w has finite order as an automorphism of T so averaging over a w-orbit shows
that w fixes some x ∈ C (recall that C is convex). Think of x as an element H ∈ t, we have that
Adw ·H = H, that is w ∈ ZG(H).

On the other hand, since H ∈C, α(H) 6= 0 for all α ∈ Φ. It follows that H acts non-trivially
in every root space so ZgC(H) = tC and hence Zg(H) = t. Now ZG(H) is connected (this is true
for all H ∈ g); its lie Algebra being Zg(H) we conclude that ZG(H) = T and hence that w ∈ T . It
follows that the image of w in W = NG(T )/T is trivial. �

THEOREM 158. W ′ =W, that is the algebraic and analytic Weyl groups coincide.

PROOF. Let w ∈W . By the transitivity of W ′ there is w′ ∈W ′ such that w ·C = w′ ·C. By the
simplicity of the action we conclude w = w′ ∈W ′. �

COROLLARY 159. For any H ∈ t, StabW (H) = 〈sα | α(H) = 0〉. In other words, the stabilizer
of H is generated by reflections in the hyperplanes containing it.

PROOF. Problem set. �
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3.6.2. Geometry of the roots. The linear map sα − Idt is non-zero but vanishes on uα . It
therefore has rank 1, and factors through α . We conclude that there is a unique α̌ ∈ t such that

sα(x) = x−α(x)α̌ .

The dual action on t∗ is then
sα(ν) = ν−ν(α̌)α

and since sα(α) =−α we have α(α̌) = 2.

DEFINITION 160. Call α̌ the coroot associated to α and write Φ̌ for the set of coroots.

REMARK 161. If α +β is a root it need not be the case that ˇα +β = α̌ + β̌ . In particular, a
root system and its dual need not be isomorphic.

EXERCISE 162.
(
t/z,Φ̌

)
is a root system, the dual root system.

LEMMA 163. Ker χα is central in Gα .

PROOF. Let z ∈ Ker χα . Then Ad(z) acts trivially on LieGα = t⊕gα ⊕g−α (see Proposition
146), thus on the connected group Gα . �

PROPOSITION 164. (1) Coroots are integral, that is α̌ ∈ Λ = Ker(exp �t).
(2) (not for class) Let ι : T → G be the inclusion map, ι∗ : π1(T )→ π1(G) the induced map

on fundamental groups. Identifying π1(T ) = Λ we have ι∗(α̌) = 1.

PROOF. Since T ⊂ Gα and the inclusion map into G factors through Gα as well, we may
assume G = Gα .

For the first claim since α(α̌) = 2, the element 1
2 α̌ has

χα

(
exp(

1
2

α̌)

)
= exp

(
2πiα(

1
2

α̌)

)
= exp(2πi) = 1 .

By the Lemma this means exp
(1

2 α̌
)

is central in G and hence is fixed by sα . On the other hand,
sα(α̌) =−α̌ so Ad(sα)exp

(1
2 α̌
)
= exp

(
−1

2 α̌
)
. It follows that

exp
(

1
2

α̌

)
= exp

(
−1

2
α̌

)
,

that is exp(α̌) = 1 and α̌ ∈ Λ.
The class of α̌ in π1(T ) is represented by the path t 7→ exp(tα̌) (t ∈ [0,1]) and we would like

to show it is nulhomotopic in Gα , or requivalently that the restriction to
[1

2 ,1
]

is homotopic to the
reverse of the restriction to

[
0, 1

2

]
. For this note that

exp((1− t)α̌) = exp(t(−α̌)) = Adsα (exp(tα̌)) ,

and for t ranging from 0 to 1
2 (so 1− t is ranging from 1 to 1

2 ) this is homotopic to t 7→ exp(tα̌)
since Gα is connected (so we can continuously deform sα to the identity). �

COROLLARY 165. For any α,β ∈Φ we have nαβ

def
= β (α̌) ∈ Z.

DEFINITION 166. The nαβ are called the Cartan numbers of g. Note that sα(β ) = β −nαβ α .

DEFINITION 167. The coroot lattice is the subgroup Γ < Λ generated by the coroots.

FACT 168. Λ/Γ' π1(G).
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COROLLARY 169. G̃ is compact iff π1(G) is finite iff Φ̌ spans t iff z = 0 iff Z(G) is finite. In
each of those equivalent cases we say that G is semisimple.

FACT 170. G is semisimple iff its lie algebra is the direct sum of nonabelian simple lie algebras,
iff G is the almost direct product of nonabelian quasisimple groups.

Recall that we have equipped g with an invariant inner product. This also endows t∗ with an
inner product and then

sα(ν) = ν−2
〈ν ,α〉
〈α,α〉

α

so if we identify t, t∗ using this inner product the element α̌ is identified with α̌∗ = 2α

〈α,α〉 ∈ t∗.

Now nαβ = β (α̌) = 〈β , α̌∗〉= 2 〈β ,α〉〈α,α〉 , and it follows from Cauchy–Schwarz that

nαβ nβα = 4
〈α,β 〉2

〈α,α〉〈β ,β 〉
≤ 4

holds, with equality iff α,β are proportional. Since the two Cartan numbers are integers, each is
zero iff α ⊥ β , and if both are non-zero their product is positive, we see that (up to exchanging
α,β ) if α,β are not proportional, the pair

(
nαβ ,nβα

)
must be one of the seven possibilities:

(0,0) ,±(1,1) ,±(1,2) ,±(1,3) .

In each case the pair
(
nαβ ,nβα

)
determines the angle between the roots and (if they are not or-

thogonal) the ratio of their lengths.

COROLLARY 171. Let α,β be non-proportional and suppose that that nαβ > 0 (equivalently
that 〈α,β 〉> 0). Then α−β ∈Φ.

PROOF. If nαβ > 0 then either nβα = 1, at which point sβ (α) = α −β ∈ Φ, or nαβ = 1, at
which point sβ (α) = β −α ∈Φ and then α−β ∈Φ as well. �

3.6.3. Simple roots. Fix a Weyl chamber C, giving a notion of positivity: call α ∈Φ positive
if it is positive on C, negative otherwise, and write Φ+,Φ− for the sets of positive and negative
roots. Since roots have constant sign on C it suffices to evaluate them at a fixed H ∈C.

DEFINITION 172. Call α ∈ Φ+ simple if it is not a sum of positive roots, and let ∆ be the set
of simple roots.

REMARK 173. This clearly depends on the choice of C. More on that anon.

LEMMA 174. Every positive root is a positive sum of simple roots.

PROOF. Let α be a counterexample with α(H) minimal. Then α is not a simple root, so
α = β +γ with β ,γ ∈Φ+. But then β (H)+γ(H) = α(H) shows that β (H),γ(H)< α(H) so they
are sums of positive roots and we have a contradiction. �

PROPOSITION 175. ∆⊂ t∗ is linearly independent.

PROOF. Let α,β ∈ ∆ be distinct. If the angle between them was acute (〈α,β 〉 > 0) then by
Corollary 171 one of α − β ,β −α would be a positive root and this would make either α or β

decomposable. It follows that 〈α,β 〉 ≤ 0 for each pair. they are also all contained in the half-plane
{ν | ν(H)> 0}. We show these two hypotheses suffice to make a set of vectors independent.
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Indeed, suppose we have a linear dependence in ∆. We then have disjoint non-empty A,B⊂ ∆ and
positive coefficients {aα}α∈A ,

{
bβ

}
β∈B such that

∑
α∈A

aα ·α = ∑
β∈B

bβ ·β .

Call this vector ν . Then
0≤ 〈ν ,ν〉= ∑

α,β

aαbβ 〈α,β 〉 ≤ 0

and it follows that ν = 0. We therefore have

0 = ν(H) = ∑
α∈A

aα ·α(H)> 0 ,

a contradiction. �

LEMMA 176. ∆ spans (t/z)∗.

PROOF. Every simple root vanishes on z, so the same holds for every element of the span.
Conversely, the span contains Φ; it follows the common kernel of the span is exactly z so the span
is exactly (g/z)∗. �

COROLLARY 177. #∆ is the semisimple rank.

COROLLARY 178. {α̌}
α∈∆

span t/z.

PROOF. Identifying t with t∗ via an inner product we have α̌∗ = 2α

〈α,α〉 so the α̌ are orthogonal
to z and are linearly independent being proportional to a basis of their span. �

LEMMA 179. {uα}α∈∆
are the walls of C.

PROOF. {H | ∀α ∈ ∆ : α(H)> 0} = {H | ∀α ∈Φ+ : α(H)> 0} = C. Since ∆ are indepen-
dent they are all walls. �

DEFINITION 180. A system of simple roots (or simple system) is a subset ∆⊂Φ such that every
root is either the sum of elements of ∆ or the negative of such a sum.

COROLLARY 181. Every system of simple roots is the set of walls of a Weyl chamber, we have
a bijection between systems of simple roots, notions of positivity, and Weyl chambers, and the Weyl
group acts transitively on simple systems. In particular, every root belongs to a simple system.

DEFINITION 182. Let n⊂ g be the subalgebra generated by {gα}α∈∆
.

LEMMA 183. n=⊕β∈Pgβ for some subset ∆⊂ P⊂Φ+; for each α ∈ ∆ the subalgebra tC⊕n
is adX−α

-invariant.

PROOF. The first claim is immediate (the root spaces are one-dimensional and the commutator
of roots spaces corresponding to positive roots is either zero or the whole root space correspond-
ing to a larger positive root). For the second claim clearly tC is adX−α -invariant; for n define
‖∑α∈∆ nαα‖1 = ∑α |nα |. If β ∈ ∆ (equivalently, β ∈ P has norm 1) the either β 6= α in which
case adX−α

Xβ = 0 since β −α is not a root, or β = α and then adX−α
Xα ∈ g0 = tC. Continuing
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by induction on ‖β‖1 for each β ∈ P of norm at least 2 we have Xβ =
[
Xδ ,Xγ ′

]
where δ ∈ ∆ and

γ ′ ∈ P of norm ‖β‖1−1. We then have adX−α
Xδ ∈ tC as before, so

adX−α

[
Xδ ,Xγ ′

]
=
[
adX−α

Xδ ,Xγ

]
+
[
Xδ ,adX−α

Xγ

]
∈
[
tC,gγ

]
+[Xδ , tC+n]

∈ gγ +gδ +n⊂ n

since nis closed under adXδ
and contains gγ ,gδ by assumption. �

PROPOSITION 184. We have n=
⊕

β∈Φ+ gβ .

PROOF. Applying complex conjugation to g we get that the subalgebra generated by {g−α}α∈∆

is n̄ = ⊕β∈Pg−β . The key observation is that n̄⊕ tC⊕ n is a subalgebra of gC. It is clearly tC-
invariant (a sum of weight spaces) and by the Lemma it is adX−α

-invariant for each α ∈ ∆ hence
invariant by n̄. By symmetry it is also n-invariant. This subalgebra is defined over R (complex-
conjugation-invariant) and its adjoint is compact (has invariant inner product) so the corresponding
adjoint group is compact, and its inverse image H < G is closed. Since ∆ is still a system of simple
roots for H this group has the same Weyl group. It follows that P∪ (−P) is W -invariant and
contains ∆, so is all of Φ. Thus P = Φ+ and n is as claimed. �

DEFINITION 185. The Dynkin diagram of G (in actuality of gC) is the graph with vertex set ∆.
The vertices α,β are connected with nαβ nβα edges which are directed from the short root to the
long one (if ‖α‖= ‖β‖ we have a single undirected edge).

EXERCISE 186. The lie algebras gC/zC and g/z can be recovered from the Dynkin diagram.

FACT 187. Every connected Dynkin diagram is one of the following:1

An
Bn
Cn

Dn

F4 G2

E6
E7

E8
3.6.4. Action of the dual space and the dual Weyl chamber. Recall tht Φ ⊂ t∗ is a root

system, spanning (t/z)∗. Each coroot α̌ defines a functional on t∗ by evaluation, and the action of
sα is by reflection in the hyperplane {ν | ν(α̌) = 0}. The reasoning before shows:

(1) The Weyl group is again W .
(2) Fixing our notion of positivity, we have the fundamental (closed) Weyl chamber

C = {ν ∈ t∗ | ∀α ∈ ∆ : ν(α̌)≥ 0}=
{

ν ∈ t∗ | ∀α ∈Φ
+ : 〈ν ,α〉 ≥ 0

}
whose translates by the Weyl group cover t∗.

1Image due to Wikimedia Commons user Tomruen, available at https://commons.wikimedia.org/wiki/
File:Finite_Dynkin_diagrams.svg
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DEFINITION 188. Call ν ∈ t∗ dominant if it lies in the fundamental Weyl chamber.

DEFINITION 189. The fundamental weights are the basis {ωi}r
i=1 ⊂ (t/z)∗ dual to {α̌i}αi∈∆

.
In other words,

2

〈
ωi,α j

〉〈
α j,α j

〉 = δi j .

Call a ν ∈ t∗ algebraically integral if it is an integral combination of the fundamental weights.

LEMMA 190. Every integral weight is algebraically integral.

PROOF. This is Lemma 164 �

REMARK 191. When G is semisimple, the lattice of algebraically integral weights is the dual
lattice of the coroot lattice.

3.6.5. The half sum of the positive roots.

LEMMA 192. Let α ∈ ∆, β ∈Φ+ \{α}. Then sα(β ) ∈Φ+.

PROOF. Write β as a sum of simple roots. Since β 6= α and the root system is reduced, some
simple root γ 6= α occurs in it. Then sα(β ) = β −nαβ α has the same (positive) coefficient of γ , so
is a positive root. �

DEFINITION 193. The “half sum of positive roots” is

ρ =
1
2 ∑

β∈Φ+

β .

PROPOSITION 194. Let α ∈ ∆, β ∈Φ, w ∈W. Then:
(1) sαρ = ρ−α .
(2) ρ(α̌) = 1.
(3) wρ−ρ ∈ Z[∆]
(4) ρ(β̌ ) ∈ Z.

PROOF. In order.
(1) ρ = 1

2α + 1
2 ∑β∈Φ+\{α}β . Now apply Lemma 192

(2) sα(ρ) = ρ−ρ(α̌)α .
(3) By induction on the generation of W by the sα .
(4) We can choose w,α so that β = wα . Then ρ(β̌ ) = (wρ)(α̌) = ρ(α̌)+(wρ−ρ)(α̌) ∈ Z

by (2),(3).
�

Recall the dual positive chamber is defined by C = {ν ∈ t∗ | ∀α ∈ ∆ : ν(α̌)> 0}

COROLLARY 195. ρ lies in the dual positive chamber.

LEMMA 196. Let ν ∈ Λ∗. Then ν +ρ ∈ C iff ν ∈ C.

PROOF. We have (ν +ρ)(α̌) = ν(α̌)+1 ∈ Z. In particulr, (ν +ρ)> 0 iff ν(α̌)≥ 0. �
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CHAPTER 4

Representation Theory of Compact Lie Groups

4.1. Setup and preliminary observations

Review.

(1) G a compact connected Lie group with Lie algebra g
(2) T ⊂ G a maximal torus with lie algebra t and Weyl group W = NG(T )/T .
(3) Λ < t the integral lattice, Λ∗ < t∗ its dual, the weight lattice.
(4) Φ = Φ(G : T )⊂ Λ∗ ⊂ t∗ the real roots.
(5) ∆ = {αi}r

i=1 ⊂Φ+ a system of simple roots corresponding to a Weyl chamber C ⊂ t; Φ+

the set of positive roots.
(6)
{

β̌

}
β∈Φ

⊂ t the coroots, {ωi}r
i=1 ⊂ (t/z)∗ the fundamental weights, the basis dual to

{α̌i}r
i=1.

(7) ρ = 1
2 ∑β∈Φ+ β .

We study a finite-dimensional representation (π,V ) ∈ Rep(G;C) . Differentiating π : G→GL(V )
we obtain a Lie algebra representation dπ : g→ EndC(V ), which extends naturally to gC.

LEMMA 197. Let W ⊂V be a subspace. Then W is G-invariant iff it is g-invariant.

PROOF. Let v ∈W . If W is G-invariant we have dπ(X) · v = d
dt

∣∣
t=0π (exp(tX))v ∈W . If W is

g-invariant we have

π (expX)v = exp(dπ(X))v =
∞

∑
k=0

1
k!

(dπ(X))k v ∈W .

Even if G is non-compact this shows that W is fixed by a generating subset of G, hence by all of
G. �

4.2. Weights

Restricting π and dπ to T for each µ ∈ Λ∗ write Vµ for the weight space

Vµ =
{

v ∈V | ∀t ∈ T : π(t) · v = χµ(t)v
}

= {v ∈V | ∀H ∈ t : H · v = 2πiµ(H)v}

so that

ResG
T V =

⊕
µ∈Λ∗

Vµ .

LEMMA 198. gα ·Vµ ⊂Vµ+α .
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PROOF. As before for the adjoint representation: Let X ∈ gα , H ∈ t, v ∈V . Then

π(H)(π(X)v) = π(X)π(H)v+[π(H),π(X)]v

= π(X)2πiµ(H)v+π ([H,X ])v

= 2πiµ(H)π(X)v+π (2πiα(H)X)v

= 2πi(µ(H)+α(H))(π(X)v)

= 2πi(µ +α)(H))(π(X)v) .

�

4.2.1. Example: su(2) (hence SU(2), SO(3) and SL2(C)). Let G = SU(2), g= su(2). Then
gC =2 C (see Section 3.4.3 and Example 150). In the standard embedding SU(2)⊂ SL2C, we have

su(2) consist of the anti-hermitian elements of sl2C = {X ∈M2(C) | trX = 0}. Let e =
(

0 1
0 0

)
,

f =
(

0 0
1 0

)
, h =

(
1 0
0 −1

)
. Note the usual commutation relations

(4.2.1) [h,e] = 2e, [h, f ] =−2 f , [e, f ] = h

so our unique root α has α(h) = 2 (and h is the coroot!).

THEOREM 199. The Lie algebra sl2C = su(2)C has a unique irreducible representation of
each dimension n≥ 1.

PROOF (UNIQUENESS). Let (π,V ) be a complex irrep of dimension n = 2`+ 1 (` ∈ 1
2Z≥0).

Then π(h) ∈ EndC(V ) has at least one eigenvalue; among the eigenvalues of π(h) let λ has maxi-
mal real part (“highest weight”) and let v ∈V be an eigenvector:

π(h)v = λv .

Since v ∈Vλ we have π(e)v ∈Vλ+2. But by the choice of λ , λ +2 is not an eigenvalue of π(h), so
that π(e)v = 0. Write v` = v and for m = `− j, j ∈ Z≥0 set

vm = π( f ) jv` .

By construction we have π(h)vm = (λ +2(`−m))vm and in particular they are linearly indepen-
dent as long as they are non-zero. It follows that there is a smallest `′ such that π( f )v−`′ = 0. By
construction we then have:

π(h)vm = (2m+λ −2`)vm ,

π( f )vm = vm−1 .

We now show by induction that

(4.2.2) π(e)vm = (`−m)(λ − `+1+m)vm+1 .

This holds for m = ` (since π(e)v` = 0). Suppose this holds for vm. Then

π(e)vm−1 = π(e)π( f )vm = π( f )π(e)vm +[π(e),π( f )]vm

= π( f )(`−m)(λ − `+1+m)vm+1 +π(h)vm

= [(`−m)(λ − `+1+m)+2m+λ −2`]vm

= (`−m+1)(λ − `+m)vm .
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It follows that Span{vm}
m=`
m=−`′ is an sl2C-invariant subspace of V , of dimension `+ `′+1≥ 1

(note that `′ may be negative). By irreducibility this is all of V – which means that the dimension
is also 2`+1 and `′ = `. Next, v−`−1 = 0 but v−` 6= 0 so

(2`+1)(λ −2`) = 0

and λ = 2`′. In the basis {vm}
m=`
m=−` we then have

(4.2.3)


π(h)vm = 2mvm

π( f )vm = vm−1

π(e)vm = (`−m)(`+1+m)vm+1

(with the provisos that π(e)v` = π( f )v−` = 0). �

PROOF (EXISTENCE, VERSION 1). Verify by hand that the maps π(e),π( f ),π(h) defined in
Equation (4.2.3) satisfy the commutation relations of Equation (4.2.3). �

PROOF (EXISTENCE, VERSION 2). Let C[x,y] be the graded ring of polynomials in two vari-

ables. The group SL2(C) acts by change of variables: (g ·P)
(

x
y

)
= P

(
g−1

(
x
y

))
. Let Vd+1 ⊂

C[x,y] be the subspaces of polynomials which are homogenous of degree d, an SL2(C)-invariant
subspace. The monomials

{
xiy j | i+ j = d

}
which span Vd+1 are the joint eigenvectors for the

diagonal torus and have distinct eigenvalues, so a subrepresentation must be spanned by a subset

of these monomials. Now the action of unipotent matrices
(

1 1
1

)
(resp.

(
1
1 1

)
) show that a

subspace containing the monomial xiy j must also contain all monominals xayb with a < i ( resp.
a > i) so the representations are irreducible. �

COROLLARY 200. The second proof gives more: every irreducible representation of sl2C
integrates to a representation of SL2(C), in particular of SU(2) (the last claim already follows
from the simple connecteness of SU(2)).

PROPOSITION 201. Every finite-dimensional representation of sl2C is completely reducible.

PROOF 1 (LIE GROUP METHOD; “WEYL UNITARY TRICK”). Let π : sl2C→EndCV be a rep-
resentation. Restricting π to su(2) ⊂ sl2C and using the simple connectedness of SU(2) we see
that π integrates to a representaiton π : SU(2)→ GL(V ). We know that this representation is
completely reducible (Theorem (23)). Each SU(2)-invariant subspace is su(2)-invariant, hence
su(2)C = sl2C-invariant, hence SL2(C)-invariant. �

• It is also possible to prove this with pure Lie-algebra-theoretic method, but we will not
discuss this in lecture.

PROOF 2 (LIE ALGEBRA METHOD). Let π(ω)
def
= 1

2π(h)2+π(e)π( f )+π( f )π(e)∈ EndC(V )
be the Casimir element (more properly the image of the Casimir element of U (sl2C) by π). It is
easy to check that (for any representation!) ω commutes with π(h),π(e),π( f ) and hence (1) is
constant in any irreducible representation; and (2) its generalized eigenspaces are sl2C-invariant.
It’s not hard to check that in the 2l + 1-dimensional representation its eigenvalue is 2`(`+ 1) (let
the element act on the highest weight vector), so it follows that those are the only eigenvalues in
a finite-dimesional representations and that a decomposition series in each generalized eigenspace
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has all its factors isomorphic, and it remains to show that the distinct irreducible represnetations
can’t nontrivially extend themselves.

Assume then that every irreducible subquotient of V has highest weight λ ∈ Z≥0 and let Vλ

be the corresponding eigenspace with basis
{

vλ ,i
}dimVλ

i=1 . Defining vλ ,i, j = π( f ) jvλ ,i clearly each{
vλ ,i, j

}
0≤ j≤2λ

is an irrep and they are linearly independent: repeately applying π( f ) pushes a

minimal dependence into Vλ . Let Uλ be the sum of these irreps, the subrepresentation generated
by Vλ . If V/Uλ is non-trivial it contains an irredicuble representation, necessarily also with highest
weight λ , so let w ∈ V be such a vector. Then (π(h)−λ )w ∈Uλ . Since π(h)−λ is invertible
on the weight spaces in Uλ other than the highest one, we can modify v by an element of Uλ (i.e.
without changing its class in V/Uλ ) so that v = (π(h)−λ )w ∈Uλ

λ
=Vλ . Here v is nonzero since

otherwise we’d have w ∈Vλ contradicting the fact that it is nonzero mod Uλ .
Since w is a highest weight vector in V/Uλ we have π(e)w ∈Uλ and then

(π(h)− (λ +2))π(e)w = π(e)(π(h)− (λ +2))w+[π(h),π(e)]w

= π(e)v−2π(e)w+2π(e)w = 0

since v is a highest-weight vector in Uλ . But λ + 2 is not an eigenvalue of π(h), so π(e)w = 0
exactly.

CLAIM 202. For all j ≥ 0 we have

π(h)π( f ) j−π( f ) j
π(h) =−2 jπ( f ) j

π(e)π( f ) j−π( f ) j
π(e) = jπ( f ) j−1 (π(h)− ( j−1))

PROOF OF CLAIM. For j = 0 both are immediate. Assuming the claims for j we have

π(h)π( f ) j+1−π( f ) j+1
π(h) =

(
π(h)π( f ) j−π( f ) j

π(h)
)

π( f )+π( f ) j (π(h)π( f )−π( f )π(h))

=−2 jπ( f ) j
π( f )+π( f ) j(−2π( f ))

=−2( j+1)π( f ) j+1 .

π(e)π( f ) j+1−π( f ) j+1
π(e) =

(
π(e)π( f ) j−π( f ) j

π(e)
)

π( f )+π( f ) j (π(e)π( f )−π( f )π(e))

= jπ( f ) j−1
π(h)π( f )− j( j−1)π( f ) j +π( f ) j

π(h)

= ( j+1)π( f ) j
π(h)+ jπ( f ) j−1 [π(h),π( f )]− j( j−1)π( f ) j

= ( j+1)π( f ) j
π(h)−π( f ) j( j2− j+2 j)

= ( j+1)π( f ) j (π(h)− ( j+1−1))

�

Now for each j, π( f ) jw is a vector of weight λ − 2 j in V/Uλ ; in fact it is in the generalized
(λ −2 j)-eigenspace of π(h)

(π(h)− (λ −2 j))π( f ) jw = π( f ) j (π(h)− (λ −2 j))w+
[
π(h),π( f ) j]w

= π( f ) jv+2 jπ( f ) jw−2 jπ( f ) jw

= π( f ) jv ,
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so
(π(h)− (λ −2 j))2

π( f ) jw = (π(h)− (λ −2 j))π( f ) jv = 0 .
Similarly to the case of π(e)w, −λ −2 is not an eigenvalue of π(h), so we must have π( f )λ+1w =

0. But then both π(e)π( f )λ+1w = 0 and π( f )λ+1π(e)w = 0, so by the second part of the claim

0 = (λ +1)π( f )λ (π(h)−λ )w = (λ +1)π( f )λ v .

But π( f )λ v is non-zero (it is the lowest weight vector in the irrep generated by v) and λ +1≥ 1 6= 0,
a contradiction. �

COROLLARY 203. Every finite-dimensional representation of 2C is a sum of weight spaces,
that is π(h) is diagonable there.

REMARK 204. The theory of Jordan decomposition in algebraic groups shows that the image
of a semisimple element by an algebraic representation is always semisimple. We have given a
concrete proof in this particular case (that every irrep is algebraic follows from the explicit con-
struction above).

REMARK 205. The same arguments would apply to a group of semisimple rank 1.

4.3. Theory of the heighest weight

4.3.1. Algebraic preliminary: the universal enveloping algebra. Recall that for a discrete
group G and a field F , its group ring is the non-commutative algebra F [G] defined as the F-vector
space with basis G and with structure constants coming from group multiplication: g ·h = gh. It is
then easy to check that every representation of G on an F-vectorspace endows it with the structure
of an F [G]-module, and conversely every F [G] module restricts to a representation of G. Under this
equivalence of categories note, for example, that if (π,V ) ∈ RepF(G) then the subrepresentation
generated by v ∈V is exactly F [G] · v.

To deal with representations of a general Lie algebra g we need the Lie theory analogue of this
construction, called the universal enveloping algebra.

DEFINITION 206. Let V be an F-vectorspace. The tensor algebra is the vector space

T (V ) =
def
=
⊕
n≥0

V⊗n

equipped with the graded algebra structure coming from the maps V⊗k⊗V⊗`→ V⊗(k+`). Write
ι : V → T (V ) for the isomorphism V →V⊗1.

LEMMA 207. Let B = {vi}i∈I ⊂ V be a basis. For σ : [n]→ I let vσ = vσ(0)⊗ ·· ·⊗ vσ(n−1).
then for each n {vσ}σ∈In ⊂V⊗n is an F-basis, so

⊔
∞
n=0 {vσ}σ∈In is an F-basis of T (V ).

PROPOSITION 208. The tensor algebra is a unital associative F-algebra generated by V (in
fact by any basis of V ). It fulfills the following universal property: for every associative F-algebra
A, every F-linear map f : V → A extends to a unique F-algebra homomorphism f̃ : T (V )→ A so
that f̃ ◦ ι = f .

PROOF. For each n define fn : V n→ A by fn(v1, . . . ,vn) = f (v1) f (v2) · · · f (vn). This is clearly
n-linear so extends uniquely to a linear map f̃n : V⊗n → A. Let f̃ = ⊕n f̃n. That f̃ is an algebra
homomorphism follows from the universal property of the isomorphism V⊗k⊗V⊗` → V⊗(k+`),
and it is clear that f̃ ◦ i = f̃1 ◦ i = f . Uniqueness follows from the fact that V generates T (V ). �
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DEFINITION 209. Suppose now that g is a Lie algebra, and J ⊂ T (g) be the two-sided ideal
generated by the relations X ⊗Y −Y ⊗X = [X ,Y ] ∈ g⊕ g⊗2 ⊂ T (g). The uinversal enveloping
algebra is the associative F-algebra

U(g) def
= T (g)/J .

Write ι : g→U(g) for the composition of the inclusion g⊂ T (g) and the quotient map.

LEMMA 210. U(g) is unital, in particular non-trivial.

PROOF. J is contained in the maximal ideal
⊕

n≥1V⊗n. �

PROPOSITION 211. For every associative F-algebra A and any Lie algebra homomorphism
f : g→ A there exists a unique f̃ : U(g)→ A so that f̃ ◦ ι = f .

PROOF. Follows from the universal property of T (g) and the fact that the kernel of the exten-
sion of any such f to T (V ) contain J.

Now let {Xi}i∈I ⊂ g be an ordered basis (i.e. equip I with a linear order). For σ : [n]→ I write
Xσ the image of the corresponding basis element of T (V ), the product Xσ(0)Xσ(1) · · ·Xσ(n−1). If
ρ : [m]→ I is another map write σ ?ρ for the concatenation

(σ ?ρ)(k) =

{
σ(k) k < n
ρ(k−n) n≤ k < n+m .

Then Xσ Xρ = Xσ?ρ . �

PROPOSITION 212. BPBW spans U(g).

PROOF. For σ : [n]→ I define W (σ) = (n,#{k < l | σ(k)> σ(l)}) equipped with the lexico-
graphic order. We show by induction on W (σ) that for all n and all σ : [n]→ I, Xσ ∈ SpanF(BPBW).
First, W (σ) = (0,0) only for the empty function and that Xσ ∈ BPBW. For other σ : [n]→ I we may
suppose that σ is not nondecreasing. In that case there is 0 ≤ k < n− 1 so that σ(k+ 1) < σ(k)

and we have σ = τ1 ? ρ ? τ2 where τ1 is the prefix of σ of length k, ρ =

(
0 1

σ(k) σ(k+1)

)
and τ2 is the suffix of length n− k− 2. Write also ρ̄ =

(
0 1

σ(k+1) σ(k)

)
and observe that

W (τ1 ∗ ρ̄ ? τ2) = W (σ)− (0,1): only one inversion is changed between τ1 ∗ ρ ? τ2,τ1 ∗ ρ̄ ? τ2.
Then

Xσ = Xτ1Xσ(k)Xσ(k+1)Xτ2

= Xτ1

(
Xσ(k)Xσ(k+1)−Xσ(k+1)Xσ(k)+Xσ(k+1)Xσ(k)

)
Xτ2

= Xτ1

[
Xσ(k),Xσ(k+1)

]
Xτ2 +Xτ1Xσ(k+1)Xσ(k)Xτ2

= ∑
i∈I

aiXτ1∗i∗τ2 +Xτ1∗ρ̄?τ2

where ai ∈ F are the coefficients so that
[
Xσ(k),Xσ(k+1)

]
= ∑i aiXi (all but finitely many of the ai

are zero). Now τ1 ∗ i ∗ τ2 have length n− 1 so W (τ1 ∗ i ∗ τ2) < W (σ) and we’ve already checked
that W (τ1 ∗ ρ̄ ? τ2) < W (σ). By induction each of the summands is in the span of BPBW, so the
same is true for Xσ . �
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COROLLARY 213. Let g=⊕r
i=1gi where gi are subalgebras. Then U(g) = ∏

r
i=1U(gi).

THEOREM 214 (Poincaré–Birkhoff–Witt). BPBW is a basis of U(g).

COROLLARY 215. The inclusion ι : g→U(g) is an embedding.

REMARK 216. This can also be proved structurally, by constructing a faithful finite-dimensional
representation and extending it to U(g).

PROOF. (Jacobson Lie Algebras, Thm. V.3) Let V ⊂ T (V ) be the span of the ordered mono-
mials. We construct a linear map R : T (g)→V such that if σ is nondecreasing, R(Xσ ) = Xσ , and
such that if ρ : [2]→ I then

R
(
Xτ1?ρ?τ2−Xτ1?ρ̄?τ2

)
= R

(
Xτ1

[
Xρ(0),Xρ(1)

]
Xτ2

)
.

It then follows that R(J) ⊂ J so R descends to a map U(g)→ V which is right-inverse to the
quotient map V → U(g). It follows that the quotient map is injective and BPBW ⊂ U(g) is a basis.

We construct R recursively in the lexicographic order above. Thus let σ : [n]→ I; if σ is
nondecreasing there is nothing to do; if not there is an inversion in σ so we decompose σ =
τ1 ?ρ ? τ2and define

R
(
Xτ1?ρ?τ2

)
= R

(
Xτ1?ρ̄?τ2

)
+R

(
Xτ1

[
Xρ(0),Xρ(1)

]
Xτ2

)
(recall that τ1 ? ρ̄ ? τ2 has one fewer reversal and thus occurs earlier in the order). Since the mono-
mials span T (g) this will extend to the required linear map as soon as we verify that this uniquely
specifies R. Suppose that σ(k+1)> σ(k) and that σ(`+1)> σ(`) for some k < `. We can then
use either inversion to define R(Xσ ) and need to make sure they agree. Since other indices do not
play a role without loss of generality we may assume either n = 3 and k = 0, ` = 1 or n = 4 and
k = 0, `= 2. In the first case we have a > b > c; if we define R using the inversion of a,b we get
by recursion

R(XaXbXc) = R(XbXaXc)+R([Xa,Xb]Xc)

= R(XbXcXa)+R(Xb [Xa,Xc])+R([Xa,Xb]Xc)

= R(XcXbXa)+R([Xb,Xc]Xa)+R(Xb [Xa,Xc])+R([Xa,Xb]Xc) .

If we use the inversion b > c instead we get

R(XaXbXc) = R(XaXcXb)+R(Xa [Xb,Xc])

= R(XcXaXb)+R([Xa,Xc]Xb)+R(Xa [Xb,Xb])

= R(XcXbXa)+R(Xc [Xa,Xb])+R([Xa,Xc]Xb)+R(Xa [Xb,Xc]) .

The difference of the two RHS is

R([Xb,Xc]Xa−Xa [Xb,Xc])+R(Xb [Xa,Xc]− [Xa,Xc]Xb)+R([Xa,Xb]Xc−Xc [Xa,Xb])

and by recursion this is the image by R of

[[Xb,Xc] ,Xa]+ [Xb, [Xa,Xc]]+ [[Xa,Xb] ,Xc] = [[Xb,Xc] ,Xa]+ [[Xc,Xa] ,Xb]+ [[Xa,Xb] ,Xc]

which vanishes by the Jacobi identity.
In the first second case we have a > b, c > d and similar arguments work depending on the

precise order of a,b,c,d, in each case reducing to the Jacobi identity. �
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REMARK 217. In positive characteristic the correct notion is that of a restricted Lie algebra
with an associated notion of restricted enveloping algebra (a quotient of the enveloping algebra)
for which the PBW Theorem as stated above does not hold (though formally the theorem above
does not use the characteristic of the field).

4.3.2. Uniqueness: highest weight vectors. We study an irreducible finite-dimensional rep-
resentation (π,V ) of g.

EXERCISE 218. The lexicographic order on Rr makes it into an ordered group; it also respects
rescaling by positive reals.

DEFINITION 219. Say ν ∈ t∗ is positive if the first nonzero entry in (ν(α̌i))
r
i=1 is positive; say

ν > ν ′ if ν − ν ′ is positive (negative). Equivalently, pull the lexicographic order of Rr to t∗ by
pullback via the map of evaluation at the {α̌i}r

i=1.

Observe that all the positive roots are positive under this order.

LEMMA 220. Let ν ,ν ′,ν ′′ be distinct weights of a finite-dimensional representation V . Then
(1) If ν > ν ′ and ν ′ > ν ′′ then ν > ν ′′.
(2) ν �z= ν ′ �z.
(3) Either ν > ν ′ or ν > ν ′.

PROOF. Suppose the first non-zero entry of ((ν−ν ′)(α̌i))
r
i=1 is the ith, of ((ν ′−ν ′′)(α̌i))

r
i=1

the jth. If i 6= j let k be the smaller of the two. Then the first non-zero entry of(
(ν−ν

′′)(α̌i)
)r

i=1 =
(
(ν−ν

′)(α̌i)
)r

i=1 +
(
(ν ′−ν

′′)(α̌i)
)r

i=1

is the kth and equals the positive entry from the corresponding summand. If i = j then the first
non-zero entry is that one, and is the sum of two positive entries.

By Schur’s Lemma the centre of g must act though a single character. It follows that any
different of weights vanishes on z; if also (ν−ν ′)(α̌i) = 0 for all i then ν − ν ′ = 0 since the
{α̌i}r

i=1 span t/z as shown in Corollary 178. �

LEMMA 221. π(t) are diagonable, that is V is a direct sum of weight spaces.

PROOF. z act by characters by the irreducibility. Restricting the representation to LieGα we
have that π(α̌) is diagonable by 203 (see Remark 205), and the claim follows that this is a spanning
set of a commutative algebra. �

LEMMA 222. V has a unique highest weight λ , which is dominant.

PROOF. The existence and uniqueness follow from the previous two Lemmata. Now for α ∈ ∆

we have that λ is also the highest weight for ResLieG
LieGα

V , so by the results of Section 4.2.1 (see
Remark 205) we have λ (α̌)≥ 0 for all α ∈ ∆. �

THEOREM 223. Let λ be the highest weight of V .
(1) dimCVλ = 1, and Vλ generates V .
(2) Vλ = {v ∈V | n · v = 0}.
(3) Every weight of V has the form λ −∑

r
i=1 niαi with ni ∈ Z≥0.

(4) For w ∈W and µ ∈Λ∗, dimVwµ = dimVµ . Furthermore all weights satisfy |µ| ≤ |λ | with
equality only in the Weyl orbit of λ (in fact, all weights lie in the convex hull of this orbit).

(5) π is uniquely determined by λ .
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PROOF. For X ∈ gβ and v∈Vλ we have π(X)v∈Vλ+β . If β > 0 then λ +β > β so Vλ+β = {0}
and Vλ is annihilated by n.

Fix a non-zero vλ ∈ Vλ . Then U(gC) · vλ is a g-invariant subspace of V , hence all of V . We
have gC = n̄⊕ tC⊕n so by PBW U(gC) = U(n̄C)U(tC)U(nC). Since the non-scalar elements of
U(nC) kill vλ and U(tC) acts on it by scalars, we have U(gC) · vλ = U(n̄C) · vλ . Now the weights
in U(n̄C) are all integer sums of negative roots (giving (3)). These weights are all negative except
for the identity, so vλ is the only vector of weight λ which completes the proof of (1).

Next, let v ∈ V be annihilated by all the positive roots, hence by U(nC) and suppose v /∈ Vλ .
Decomposing v into the weight spaces and substracting the component in Vλ let vµ ∈ Vµ be the
highest weight component occuring in v other than vλ . Then vµ is also annihilated by U(nC)
and rescaled by U(tC) so generates the subrepresentation U(n̄C) · vµ containing only vectors of
weights≤ µ which is impossible since V is irreducible – so we get (2).

The W -invariance follows immediately from the fact that V is a representation of G, but we
can also give a proof using only the Lie algebra by restricting the representation to LieGα and
noting that the classification of representations of those Lie algebras in Section 4.2.1 shows that
(a) ResG

Gα
V is completely reducible; (b) the weights in each irrep of Gα are sα -invariant. Now let

µ be a weight of V , wlog dominant (act by the Weyl group) so that 〈µ,αi〉 ≥ 0. By (3) we have
λ = µ +∑

r
i=1 niαi with ni ∈ Z≥0 so

|λ |2 = |µ|2 +

∣∣∣∣∣ r

∑
i=1

niαi

∣∣∣∣∣
2

+2
r

∑
i=1

ni 〈µ,αi〉 ≥ |µ|2 .

Furthermore we have equality only if ∑
r
i=1 niαi = 0 that is if λ = µ , and in general if µ = wλ for

some w ∈W .
To show that π is determined by λ we can proceed as in Section 4.2.1, computing the action of

the raising operators on the weight vectors, but the following proof (see [1]) is simpler. Let V,W
be two irreducible representations with highest weight λ and highest weight vectors vλ ,wλ . Then
vλ +wλ ∈ (V ⊕W )λ , =Vλ ⊕Wλ is annihilated by n so generates a subrepresentation R of V ⊕W
of which it is the unique highest weight vector. Let πV : V ⊕W →V and πW : V ⊕W →W be the
projections, which are G-invariant. Then πV (R) is a subrepresentation of V containing vλ , that is
all of V . On the other hand KerπV �R= R∩W is a subrepresentation of W not containing wλ , so
{0}. It follows that πV �R is an isomorphism R→V ,and for the same reason πW �R : R→W is an
isomorphism and V,W are isomorphic. �

4.3.3. Existence: Verma modules.

DEFINITION 224. Call a (possibly infinite-dimensional) U(gC) module V a highest weight
module if it is generated (as a module) by a vector v ∈ V of weight λ such as λ is the highest
occuring weight.

The proof of Theorem 223 shows that in that case V = U(n̄C)v, that is V is the sum of finite-
dimensional weight spaces with weights λ −∑

r
i=1 niαi, and that Vλ is one-dimensional.

DEFINITION 225. For a weight λ let Cλ be the one-dimensional representation of tC ⊕ n
(equivalently of its UEA) where n acts trivially and t acts via λ . The Verma module W λ is the
induced module

IndU(gC)U(tC)U(nC)
Cλ ' U(gC)⊗U(tC⊕n)C

λ ' U(gC)/Iλ
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where Iλ is the left ideal of U(gC) generated by h and by the elements {H−λ (H)}H∈t.

OBSERVATION 226 (Verma module structure).

(1) This is clearly a highest weight module, universal among all highest weight modules with
highest weight λ .

(2) Every proper invariant subspace is the sum of its weight spaces and does not contain the
highest weight vector, so the sum of all proper invariant subspaces is a proper invariant
subspace – the maximal one.

(3) W λ has a unique irreducible quotient Lλ , the unique irreducible highest-weight module
with highest weight λ .

THEOREM 227. Suppose λ is algebraically integral and dominant. Then Lλ is finite-dimensional.

PROOF. Let vλ ∈W λ be the highest weight vector, and let α ∈ ∆. By the calculation of Section
4.2.1 if we normalize Xα ,X−α so that [Xα ,X−α ] = α̌ we have

Xα(X−α)
k+1vλ = (k+1)(λ (α̌)− k)(X−α)

kvλ .

Since λ is integral and dominant we have λ (α̌)∈Z≥0 and it follows that (X−α)
λ (α̌)+1 vλ is annihi-

lated by Xα . If β ∈∆\{α} is another simple root then X−α and Xβ commute, so Xβ (X−α)
λ (α̌)+1 vλ =

(X−α)
λ (α̌)+1 Xβ vλ = 0 and (X−α)

λ (α̌)+1 vλ is itself a highest-weight vector. It follows that in the
quotient Lλ the LieGα -submodule generated by vλ is of dimension λ (α̌)+ 1. Let Mα ⊂ Lλ be
the sum of all finite-dimensional LieGα -submodules. Then gC⊗C Mα is also such a module, so
the same is true for its image in Lλ , which must then be contained in Mα so Mα ⊂ Lλ is a non-
trivial gC-submodule, hence all of Lλ . Now the weights of an irreducible LieGα -submodule are
sα -invariant and by the theorem on complete reducibility we conclude that the weights of Lλ are
W -invariant (dimCLλ

wµ = dimCLλ
µ ). Now each weight space is finite-dimensional (this was already

true for W λ ), so it is enough to show that there are finitely many weights, and since the Weyl group
is finite that there are finitely many dominant weights. Finally if λ −∑

r
i=1 niαi is dominant then

0≤ 〈ρ,λ −∑
r
i=1 niαi〉 so 0≤ ni ≤ 〈ρ,λ 〉〈ρ,αi〉 and we are done. �

THEOREM 228. Suppose further that λ is integral. Then Lλ extends to a representation of G.

4.4. Characters

4.4.1. Analytical preliminary: the Weyl Integration formula.

DEFINITION 229. Call H ∈ t singular if β (H) ∈ Z for some β ∈ Φ. Let greg ⊂ t be the set of
regular (that is nonsingular) elements.

The set of regular elements is the complement of a the family of hyperplanes {β (H) = m}, so
is open, dense, and of full (Lebesgue) measure.

LEMMA-DEFINITION 230. For H ∈ t either all elements of H +Λ are singular or all are.
Define T reg to be the set of exponentials of regular elements, again an open dense set of full
measure.

By Corollary 131 the the map (g, t) 7→ g−1tg is a G-equivariant surjection q : G/T ×T → G.
By Corollary 159 the map is #W -to-1 on the T reg.
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LEMMA 231. The Jacobian determinant of q at (e, t)is

J(t) = det
(
Id−Adt−1

∣∣g/t) .
PROOF. For X ∈ g/t, H ∈ t we have

(Id−X) t(Id+H)(Id+X)− t =−Xt + tX + tH + error

= t (X +H−Adt−1 X)

. �

• This is non-zero on an open dense set (t off the walls) whose complement has measure
zero
• For t off the walls, the inverse image of t is exactly its Weyl orbit.

PROPOSITION 232 (Weyl integration formula). Let f ∈C(G). Then

#W
∫

G
f (g)dg =

∫
T

[
J(t)

∫
G

f (gtg−1)dg
]

dt .

COROLLARY 233. Let f ∈C(G) be a class function. Then∫
G

f (g)dg =
1

#W

∫
T

J(t) f (t)dt .

4.4.2. Algebraic preliminary: the ring of characters.

LEMMA-DEFINITION 234. Let I ⊂ t∗ be any additive subgroup. Then the group ring RI =

Z
[
{e◦µ}

µ∈I

]
is a UFD.

PROOF. For any finite A⊂ I write RA = R〈A〉. The subgroup 〈A〉 is free of finite rank, hence of

the form 〈B〉 for some B⊂ I which are linearly independent over Q. Then RA = RB 'Z
[{

x±i
}#B′

i=1

]
which is a localization of the polynomial ring Z

[
{xi}#B

i=1

]
. This makes each RB a UFD, which

means the same is true for their direct limitRI . �

We will apply this to the sets I = {µ ∈ t∗ | µ(Γ)⊂ Z} ⊃ Λ∗ of algebraically and analytically
integral weights.

LEMMA 235. Suppose f ∈ RI vanishes on β−1(Z) for some β ∈ I. Then e◦β −1 divides f .

COROLLARY 236. Suppose f vanishes on the singular set. Then ∏β>0 (e◦β −1) divides f .

PROOF. RI is a UFD and these are pairwise prime irreducibles. �

We now use the W -invariance of I and Λ∗. By the Coxeter relations, or by taking the deter-
minant of the action on t, there is a character sgn: W → {±1} mapping each root reflection to
−1.

DEFINITION 237. Call f ∈ RI symmetric if it is W -invariant, alternating if f ◦w = sgn(w) f .

OBSERVATION 238. An alternating function vanishes on the singular set.
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PROOF. If β (H) ∈ Z then sβ (H) = H−β (H)β̌ so

f (H) =− f
(
sβ H

)
=− f

(
H−β (H)β̌

)
=− f (H)

since for every µ ∈ I we have µ

(
H−β (H)β̌

)
= µ(H)−β (H)µ(β̌ ) ∈ µ(H)+Z. �

EXAMPLE 239. We will use the following two alternating functions:
(1) The Weyl denominator

δ (H) = ∏
β∈Φ+

[
e
(

1
2

β (H)

)
− e
(
−1

2
β (H)

)]
= e(−ρ(H)) ∏

β>0
[e(〈β ,H〉)−1](4.4.1)

= e(ρ(H)) ∏
β>0

[1− e(−〈β ,H〉)]

(2) For λ ∈ t∗

Cλ (H) = ∑
w∈W

sgn(w)e(〈λ ,wH〉) .

LEMMA 240. Both functions are indeed alternating. Further
(1) δ vanishes exactly on the singular set.
(2) Cλ = 0 iff λ lies on a wall of a dual chamber.

PROOF. Clearly Cλ is alternating; for δ let α ∈ ∆ be a simple root. Then

δ (sαH) = ∏
β∈Φ+

[
e
(

1
2
〈sαβ ,H〉

)
− e
(
−1

2
〈sαβ ,H〉

)]
=

[
e
(

1
2
〈−α,H〉

)
− e
(
−1

2
〈−α,H〉

)]
∏

β∈Φ+\{α}

[
e
(

1
2
〈sαβ ,H〉

)
− e
(
−1

2
〈sαβ ,H〉

)]
=−δ (H) = sgn(sα)δ (H) ,

and the claim follows since W is generated by the simple roots.
Furthermore δ (H) = 0 iff e(β (H)) = 1 for some β , that iff β (H)∈Z for some β . For Cλ recall

that the group StabW (λ ) is generated by the root reflections it contains, which are reflections in the
walls containing λ . If the stabilizer is trivial Cλ 6= 0 since exponentials with distinct frequencies
are linearly independent; if λ is fixed by some reflection sβ we have

Cλ =−Csβ λ =−Cλ

so Cλ = 0. �

The function δ is closely connected with the Weyl integration formula.

LEMMA 241. We have
(
δ · δ̄

)
(H) = J(expH).

PROOF. By Equation (4.4.1)(
δ · δ̄

)
(H) = ∏

β∈Φ

[1− e(〈β ,H〉)] .

50



Now the eigenvalues of Id−Adexp(−H) acting on (g/t)C are exactly given by the exponential roots
1− e(〈β ,H〉) and the claim follows. �

PROPOSITION 242. Let λ be algebraically integral and let

φλ =
Cρ+λ

δ
,

defined initially on greg. Then
(1) φλ ∈ RI and thus extends to a symmetric continuous function on t.
(2) If λ is analytically integral φλ is constant on Λ-cosets, hence extends to a continuous

function on T/W.

PROOF. The function

e◦ρ ·Cλ+ρ = ∑
w∈W

sgn(w)e◦ (wρ +ρ +wλ )

belongs to RI since wρ +ρ = (wρ−ρ)+ (2ρ) ∈ Z[∆]⊂ Λ∗. It vanishes on the singular set since
Cλ+ρ does (it is alternating!). It follows that

φλ =
e◦ρ ·Cλ+ρ

∏β>0 [e◦β −1]
∈ RI .

In the last representation, the denominator is clearly a function on T reg, and if λ ∈ Λ∗ then the
same holds for the numerator by the previous discussion. It follows that φλ extends to T . �

LEMMA 243. SpanZ {φλ}λ∈I∩C = RW
I and similarly for Λ∗.

PROOF. The functions dλ = ∑w∈W e ◦λ ◦w as λ runs over I ∩C clearly span RW
I . From the

representation

φλ =±
e(−ρ)Cλ+ρ

∏β>0 [1− e(−β )]

and working in the ring of infinite formal sums ∑µ∈I nµ µ supposrted on sets of the form λ −
∑

r
i=1Z≥0αi (observe that [1− e(−β )]−1 = ∑

∞
m=0 e(−mβ ), for example) we see that the highest

weight occuring in φλ is λ , where it occurs with multiplicity 1. It follows that for dominant λ we
have

dλ −φλ ∈ SpanZ
{

dµ | λ > µ dominant
}

and the claim follows by induction. �

4.4.3. The Weyl character formula.

THEOREM 244 (Weyl character formula). Let λ be an algebraically integral dominant weight.
Then for H ∈ LieT we have

χλ (H)
def
= Tr

(
expLλ (H)

)
= φλ (H) .

REMARK 245. If Lλ integrates to a representation πλ of G then expdπλ (H) = πλ (expH) so
we have computed the character of πλ .

EXAMPLE 246. e(−ρ)∏β>0 [e(β )−1] =Cρ .

51



PROOF. The representation with highest weight 0 is the trivial representation, for which the
character is identically 1. �

COROLLARY 247 (Weyl dimension formula).

dimLλ = ∏
β>0

〈β ,λ +ρ〉
〈β ,ρ〉

= ∏
β>0

(λ +ρ)(β̌ )

ρ(β̌ )
.

PROOF. Write the character formula as

Cρ χλ =Cρ+λ

For H ∈ t define the formal derivative ∂H of e(µ) to be 2πiµ(H)e(µ). This is a derivation of
C⊗RI since it’s the usual derivative as a function on t. If we apply any combination ∏

m
i=1 ∂Hi with

m < #Φ+ to Cρ at least one of the factors e(β )−1 would remain and hence the derivative would
vanish at zero. Applying ∏α>0 ∂α̌ to both sides and evaluating at H = 0, on the LHS we get zero
unless we only differentiate Cρ so((

∏
β>0

∂
β̌

)
·Cρ

)
(0) ·dimLλ =

((
∏
β>0

∂
β̌

)
·Cρ+λ

)
(0) .

Now for any µ((
∏
β>0

∂
β̌

)
Cµ

)
(0) =

((
∏
β>0

∂
β̌

)
∑

w∈W
sgn(w)e(wµ)

)
(0)

= ∑
w

sgn(w) ∏
β>0

〈
β̌ ,wµ

〉
= ∑

w
sgn(w−1) ∏

β>0

〈
w−1

β̌ ,µ
〉
.

Observe that for reflection in a simple root α we have

∏
β>0

〈
sα β̌ ,µ

〉
= 〈−α̌,µ〉 ∏

β∈Φ+\{α}

〈
β̌ ,µ

〉
= sgn(sα) ∏

β>0

〈
β̌ ,µ

〉
.

It follows by induction that the same is true for any product of simple roots, so((
∏
β>0

∂
β̌

)
Cµ

)
(0) = #W ∏

β>0

〈
β̌ ,µ

〉
.

Dividing the values for Cρ+λ and Cρ now gives the claim. �

Let λ now be an integral dominant weight, and let φλ (t) be the function on T/W defined by
the Weyl character formula. By Corollary 131 the function φλ extends to a class function on G.

PROPOSITION 248. The extensions {φλ}λ∈Λ∗∩C are a complete orthonormal system in the
space of class functions on G.
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PROOF. By the Weyl integration formula and Lemma 241 we have for integral dominant
weights µ,ν that 〈

φµ ,φλ

〉
G =

1
#W

〈
Cρ+µ ,Cρ+λ

〉
T .

Now the W -orbits of the characters ρ + µ,ρ + λ are either equal or disjoint (and equal iff µ =
λ since a Weyl orbit can intersect the interior of a chamber at most once) and the exponential
characters are an orthonormal system in L2(T ) (and furthermore for each w,w′ ∈W the function

e
(
−(ρ +µ)◦w+(ρ +λ )◦w′

)
is defined on T since w′ρ−wρ ∈Z[∆]. It follows that {φλ} is an orthonormal system of class func-
tions. By Lemma (243) their restrictions to T/W span RW

Λ∗ which by Stone–Weierstrass/Fourier
theory is dense in C(T/W ). It follows that {φλ} are dense in the space of continuous class func-
tions, hence a complete orthonormal system in the space of square-integrable class functions. �

PROOF OF THEOREM 228. Let F be the set of (analytically) integral dominant weights λ so
that Lλ integrates to a representation of G. By Theorem 223 this is an enumeration of Ĝ, and
by Theorem 244 φλ are the characters of those representations. By Theorem 36, the characters
of all the irreducible representations form a complete orthonormal system in the space of square-
integrable class functions. It follows that {φλ}λ∈F ⊂ {φλ}Λ∗∩C are both complete, so F = Λ∗∩C
as claimed. �
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CHAPTER 5

Semisimple Lie groups

5.1. Semisimple Lie algebras; the Cartan Involution

5.1.1. Generalities. Let g be Lie algebra over a field k of characteristic zero. Recsall the
following (PS5):

LEMMA-DEFINITION 249. The Killing form B(X ,Y ) = Tr
(
adX adY

∣∣g) satisfies:
(1) It is a symmetric bilinear pairing g×g→ k.
(2) It is ad-invariant: B(adZ X ,Y )+B(X ,adZ Y ) = 0 for all X ,Y,Z ∈ g.

LEMMA 250. Let V be a finite-dimensional k-vector space, T ∈ Endk(V ), let U ⊃ T (V ) be
a subspace containing the image of T . and set S : U → U be the restriction of T to U. Then
Tr(T |V ) = Tr(S |U).

PROOF. Extend a basis of U to a basis of V . �

COROLLARY 251. Let a⊂ g be an ideal. Then for X ,Y ∈ a we have Ba(X ,Y ) = Bg(X ,Y ).

PROOF. If X ∈ a then the image of adX is contained in a since for every Z ∈ g we have
adX Z = [X ,Z] =− [Z,X ] ∈ a. �

COROLLARY 252. Let a⊂ g be an abelian ideal. Then a⊂ radB.

PROOF. Let X ∈ g and Y ∈ a. Then the image of adY is contained in a, and adX maps a to itself.
It follows that B(X ,Y ) = Tr(adX adY |g) = Tr(adX adY |a). But by hypothesis we have adY �a= 0
and it follows that B(X ,Y ) = 0. Since X was arbitrary we conclude that Y ∈ radB. �

DEFINITION 253. Call g semisimple if its Killing form is non-degenerate.

Fix a semisimple Lie algebra g. For a subset a ⊂ g write a⊥ for its orthogonal complement
with respect to the killing form.

PROPOSITION 254. Let a⊂ g be an ideal. Then a⊥ is an ideal and g= a⊕a⊥ as Lie algebras.

PROOF. In stages:
(1) a⊥ is an ideal: Let X ∈ a⊥, Z ∈ g. Then for any Y ∈ a, [Z,Y ] ∈ a is orthogonal to X ∈ a⊥

and hence

B([Z,X ] ,Y ) = B(adZ X ,Y ) =−B(X ,adZ Y ) =−B(X , [Z,Y ]) = 0 ,

so that [Z,X ] ∈ a⊥.
(2) a and a⊥ commute: Let X ∈ a, Y ∈ a⊥. then for any Z ∈ g,

B(Z, [X ,Y ]) = B(X , [Y,Z]) = 0

since [Y,Z] ∈ a⊥ ⊂ X⊥. Since B is non-degenerate we conclude [X ,Y ] = 0.
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(3) a∩ a⊥ = {0}: From (1),(2) it follows that a∩ a⊥ is an abelian ideal, and Corollary 252
then shows a∩a⊥ ⊂ radB = {0}.

(4) a⊕a⊥ = g: From (3) it follows that the restriction of B to a is non-degenerate (radBa =
a∩a⊥). Thus for any X ∈ g there is Y ∈ a such that for all Z ∈ a, B(X ,Z) = B(Y,Z) (every
linear functional on a is realized via Ba). Then X−Y ∈ a⊥ and thus X ∈ a+a⊥.

�

COROLLARY 255. Every semisimple Lie algebra is the direct sum of simple ideals.

5.1.2. Real semisimple Lie algebras and groups. Fix a real semisimple Lie algebra g. Re-
alizing Aut(g) ⊂ GL(g) as a closed subgroup, we can identify Lie(Aut(g)) with a subalgebra of
gl(g) = EndR(g). Every adX exponentiates in GL(g) to an automorphism, so adX ∈ Lie(Aut(g))

PROPOSITION 256. Lie(Aut(g) is the image of g by the adjoint representation.

PROOF. Write h= Lie(Aut(g). Since Zg = {0}, the image of the adjoint map is isomorphic to
g. Next, for X ∈ g, Y ∈ h we have ad[Y,X ] = [Y,adX ] (the second is the commutator in gl(g)), and it
follows that adg ⊂ h is a Lie ideal. Its orthogonal complement (wrt the Killing form of h) is also
an ideal since the proof of part (1) of Proposition 254 did not use semisimplicity. The intersection
adg∩ (adg)⊥ is then contained in the radical of the restriction of Bh to adg. But that restriction is
Bg which is non-degenerate, and we conclude that (adg)⊥∩ adg = {0}. The proof of part (4) of
Proposition 254 now shows that h= adg⊕(adg)⊥ as vector spaces. Finally, the trivial intersection
also shows that the two ideals commute:

[
(adg)⊥ ,adg

]
⊂ (adg)⊥∩adg= {0}, which means that

any D ∈ (adg)⊥ acts trivially on g. But since these are derivations of g it follows that D = {0} –
in other words that (adg)⊥ = 0 and h= adg. �

DEFINITION 257. A Lie group G is semisimple if its Lie algebra is.

COROLLARY 258. Let G be a semisimple Lie group. then Ad(G) is the connected component
of Aut(g) and in particular is closed in Aut(g) and hence GL(g).

COROLLARY 259 (Converse to PS5 Problem 6(e)). Let G be a connected Lie group with finite
centre and suppose that its Killing form is negative definite. Then G is compact.

PROOF. G is semisimple since its Killing form is non-degenerate. G/Z(G)=Ad(G) is a closed
subgroup of GL(g) preserving a definite quadratic form, hence compact. �

LEMMA 260. Let G be semisimple. Then Ad(G) is centerfree.

PROOF. Suppose Adg ∈ Ad(G) is central. Then for any X ∈ gand t > 0 we have

exp(t ad(Adg X))= exp
(

t Adg adX Adg−1

)
=Adg exp(t adX)Adg−1 =Ad(exp(tX))= exp(t adX)

Differentiating wrt t we have ad(Adg X) = adX . Since adg ' g we conclude that Adg X = X so
that Adg = id. �

• Do not discuss in class:

THEOREM 261 (Jordan decomposition). Let X ∈ g. Then there exist commuting Xs,Xn ∈ g such
that adXs is semisimple, adXn is nilpotent and X = Xs +Xn.
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PROOF. Aut(g) ⊂ GL(g) is an algebraic group with Lie algebra adg ' g, and the claim now
follows from the corresponding claim for algebraic groups (see 4.4[2, Thm.\{} 2.4.8, Thm.\{}
4.4.20, ]). �

5.1.3. Real forms and Cartan involutions. Let g be a real semisimple Lie algebra, gC its
complexification. Let h⊂ gC be a Cartan subalgebra. Then

gC = h
⊕

α∈Φ(gC:h)

gα .

FACT 262. Can choose basis Xα ∈ gα so that
(1) [Xα ,X−α ] = Hα ∈ h is the coroot,
(2) If α +β is root then

[
Xα ,Xβ

]
= Nα,β Xα+β for real Nα,β such that N−α,−β =−Nα,β .

COROLLARY 263. Let h0 = {H ∈ h | ∀α ∈Φ : α(H) ∈ R}= SpanR {Hα}α∈Φ
. Then

g0 = h0⊕
⊕
α∈Φ

RXα

is a real form of g, the split real form.

COROLLARY 264. Let

u= ih0⊕
⊕
α>0

R(Xα −X−α)⊕
⊕
α>0

iR(Xα +X−α)

is a real form with negative-definite killing form, hence a compact real form.

PROOF. Direct computation. �

LEMMA 265. For X ∈ gC let τ(X) denote complex conjugation wrt u. Then τ ([X ,Y ]) =
[τ(X),τ(Y )]. Furthermore, let B̃ be the killing form of gC considered as a real Lie algebra. Then
B̃(X ,τ(Y )) is negative-definite.

DEFINITION 266. Let g be a real Lie algebra. An involution θ ∈ Aut(g) such that Bθ (X ,Y ) =
Bg(X ,θY ) is negative-definite is called a Cartan involution.

EXAMPLE 267. g= glnR, θ(X) =−X∗ (negative transpose).

• Every complex semisimple Lie algebra has a Cartan involution.

LEMMA 268. Let g ∈ Aut(g) be symmetric positive definite with respect to Bθ . Then g =
expadX for some X ∈ g (in particular g ∈ Aut(g)◦)

PROOF. Let g =
⊕

λ gλ be the spectral decomposition of g wrt g. As usual
[
gλ ,gµ

]
= gλ µ .

Thus for any t > 0 if X ∈ gλ , Y ∈ gµ we have[
gtX ,gtY

]
= (λ µ)t [X ,Y ] = gt [X ,Y ]

and it follows that gt ∈Aut(g). The one-parameter subgroup {gr}r>0 ⊂Aut(g) is then of the form
exp(tX) with X ∈ Lie(Aut(g)) = adg. �

THEOREM 269. Every real semisimple Lie algebra has a Cartan involution.
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PROOF. Let g be a real semisimple Lie algebra. Let h= g⊕R ig viewed as a real Lie algebra.
By Lemma 265 h is real semisimple with a Cartan involuion θ ; in addition gis the set of fixed points
of the involution σ ∈ Aut(h) given by complex conjugation. Then ρ = σθ is an automorphism of
h. For X ,Y ∈ h we have

Bh (ρX ,θY ) = Bh

(
X ,ρ−1

θY
)

= Bh (X ,θσθY )

= Bh (X ,θ(ρY )) .

It follows that ρ is symmetric wrt Bθ and hence that ρ2 is symmetric positive-definite. We have
ρ2θρ2 = σθσθθσθσθ = θ . Working in a basis where ρ is diagonal we get |ρ|t θ |ρ|t = θ for all
t (and that |ρ| and ρ commute).

Consider now the Cartan involution θ̃ = |ρ|1/2
θ |ρ|−1/2. We have

θ̃σ =
(
|ρ|1/2

θ |ρ|−1/2
)

σ

|ρ|
(
|ρ|−1/2

θ |ρ|−1/2
)

σ

= |ρ|θσ = |ρ|ρ−1

and similarly that
σθ̃ = σ |ρ|θ = σθ |ρ|−1 = ρ |ρ|−1 .

Now working in a basis where ρ is diagonal we see that |ρ|ρ−1 = ρ |ρ|−1 that is σθ̃ = θ̃σ . It
follows that θ̃ acts on the fixed-point set of σ , that is on g. It remains to show that θ̃ �g is a
Cartan involution. For X ,Y ∈ g we have that adhX , adhY are block-diagonal with respect to the
decomposition h= g⊕R ig with equal blocks, so Bh(X ,Y ) = 2Bg(X ,Y ) and so

Bg(X , θ̃Y ) =
1
2

Bh(X , θ̃Y )

is negative-definite. �

5.2. Cartan and Iwasawa Decompositions

Fix a Cartan involution θ of g. Let k,p be the +1,−1 eigenspaces respectively. Then k is a
subalgebra and p is a k-module, so they are orthogonal wrt Bg and Bθ . For X ,Y ∈ k it follows that
Bk(X ,Y ) = Bg(X ,Y ) = Bg(X ,θY ) is negative definite, so k is a compact Lie algebra.

OBSERVATION 270. k⊕ ip is a compact real form of gC.

LEMMA 271. Let ∗ denote adjoints wrt to the inner product Bθ . Then (adX)∗ =−ad(θX).

COROLLARY 272. adg⊂ EndR(g) is a subalgebra closed under transpose.

THEOREM 273. Let G be connected semisimple, θ a Cartan involution of g= k⊕p.
(1) There exists an involution Θ ∈ Aut(G) with dΘ = θ .
(2) GΘ =K is the subgroup with Lie algebra k. It is closed, contains Z = Z(G) and is compact

mod centre.
(3) (Cartan decomposition) The map K× p→ G given by (k,X) 7→ k expX is a diffeomor-

phism.
(4) When Z is finite K is a maximal compact subgroup.
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PROOF. Consider first the case of Ḡ = Ad(G). Equipping g with the inner product Bθ if g ∈
Aut(g) then for any X ,Y we have

[
gXg−1,gY g−1] = [X ,Y ] as linear maps in EndR(g) (idenfying

X with adX). Recalling that [X ,Y ] = XY −Y X and taking transposes we find

−
[
(g−1)∗X∗g∗,(g−1)∗Y ∗g∗

]
=− [X∗,Y ∗] .

Since g is closed under transpose, we see that (g∗)−1 ∈Aut(g) so g∗ ∈Aut(g) as well. Define now
Θ̄(g) = (g∗)−1 ∈ Aut(Ḡ). Clearly Θ̄2 = Id. Its differential is X 7→ −X∗ which is θ .

The fixed points of Θ̄ are the compact subgroup K̄ =Aut(g)∩O(Bθ ) with Lie algebra {X ∈ g | X∗ =−X}=
k.

The map k expX is smooth Θ̄× p→ Ḡ. We first construct the inverse: suppose g = k expX .
then g∗g = exp(X∗)k∗k exp(X) = exp(2X) and X is uniquely determined as the logarithm of a
positive-definite matrix (and moreover the map g→ X is smooth), at which point k = gexp(−X)
shows that k is also unique and depends smoothly on g.

To see that the inverse is defined everywhere note that for g∈G the element g∗g∈G is positive-
definite, hence of the form exp2X for some X ∈ g. Since exp(2tX)= (g∗g)t are all positive-definite,
the same is true for the derivative at t = 0, so X ∈ p. Let k = gexp(−X). Then

k∗k = exp(−X)g∗gexp(−X) = Idg

so k ∈ K and g = k exp(X).
Returning to the general case, since G is semisimple Zg = {0} so Z is discrete, and Ad(G) is

the covering map G 7→ G/Z. Let K be the inverse image of K̄ under the quotient map, necessarily
a closed subgroup which is compact mod Z. Let q : G→ Ḡ be the covering map Ad, and consider
its extension q̃ : G/K→ Ḡ/K̄. The map is continuous and surjective since q is, and injective since
Z ⊂ K. Suppose now that

q(gn)K̄→ q(g)K̄

in Ḡ/K̄. We want to prove that gnK→ gK in G/K. Since K̄ is compact we can assume wlog that
q(gn)→ q(g). Then q(g−1gn)→ 1Ḡ. By the covering property we have an open neighbourhood
1∈ Ū ⊂ Ḡ such that q−1(Ū) =U×Z for a neighbourhood 1∈U ⊂G. Write gn = unzn and g = uz.
Then g−1gn = (z−1zn)(u−1un) with u−1un→ 1. It follows that unZK→ uZK i.e. that gnK→ gK.

For g ∈ G we have q(g) = q(k)q(expX) for some k ∈ K, X ∈ p and then g = kzexp(X) for
some z ∈ Z, so g = (kz)expX ∈ K expp. The uniqueness of X follows from the uniqueness in Ḡ,
and this gives the uniqueness of kz as well. Since q is a local diffeomorphism and since the Cartan
decomposition of Ḡ is a diffeomorphism, the same is true for G. Thus K is a smooth deformation
retract of G. Thus makes K connected, hence the Lie subgroup with Lie algebra k, and in addition
π1(G)' π1(K).

Finally let G̃→G→ Ḡ be the universal covering group. Everything thus far applies to G̃, giving
a connected subgroup K̃ such that K̃ covering K. The Lie algebra homomorphism θ extends to a
Lie group homomorphism Θ̃ of G̃; since θ is trivial on k its exponential Θ̃ is trivial on K̃ and in
particular on Z̃. It follows that Θ̃ descends to an involution Θ of G with fixed point set K. �

Let A,N be the subgroups correpsonding to a, n and let M = ZK(a) = ZK(A).

PROPOSITION 274. A is a closed subgroup and exp: a→ A is a diffeomorphism.

PROOF. We first verify that exp: a→ A is proper. Indeed, ∆ ⊂ a∗R is a basis, so ‖H‖
∞
=

maxα∈Φ |α(H)| is a norm on a. Since exp(α(H)) are all eigenvalues of AdexpH it follows that for
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any operator norm on End(g), ∥∥AdexpH
∥∥≥ exp‖H‖

∞
.

By Theorem 112,exp: a→ A is a covering map. Being proper its kernel is compact hence
trivial. Also, since a is locally compact its image by a proper map is closed. �

REMARK 275. When G is reductive we have a = a1⊕ z with a1 the Cartan subgroup of the
derived group. The argument above applies to A1 = expa1; for z it’s enough to note that Z(G) is
closed.

PROPOSITION 276. N is a closed subgroup and exp: n→ N is a diffeomorphism.

PROOF. We prove the second claim first. The exponential map is always a local diffeomor-
phism, and the only question is whether it is bijective, and surjectivity holds since n is nilpo-
tent. Suppose that expX = expY for some X ,Y ∈ n. We can write X = ∑α>0 Xα , Y = ∑α Yα

with Xα ,Yα ∈ gα . Choose H ∈ a in the interior of the positive Weyl chamber, in other words
such that α(H) > 0 for all α > 0. Then Adexp(−tH) exp(X) = exp(∑α>0 exp(−tα(H)Xα) so
exp(∑α>0 exp(−tα(H)Xα) = exp(∑α>0 exp(−tα(H)Yα). Thus if t is large enough the local in-
jectivity of the exponential map gives ∑α>0 exp(−tα(H)Xα = ∑α>0 exp(−tα(H)Yα from which
we conclude for each α that exp(−tα(H)Xα = exp(−tα(H)Yα and Xα =Yα , hence that the expo-
nential map is injective.

To see that N is closed, let N denotes its topological closure. This is a connected nilpotent
subgroup normalized by A, so Lie(N) =

(
Lie(N)∩g0

)
⊕
⊕

α

(
Lie(N)∩gα

)
. Lie(N) certainly

contains n. It cannot contain any element of a (this would give it a solvable but non-nilpotent
subalgebra) or of gα for α < 0 (this would induce an element of a). It follows that n ⊂ Lie(N̄)⊂
n⊕a⊕m so if if the first containment is proper Lie(N̄) contains a nonzero element of a⊕m, that
is an ad-semisimple element. But and the set of nilpotent element of End(g) is closed. Since every
non-zero element of a⊕m is ad-semisimple and normalizes n it follows that Lie(N̄) = n and hence
that N̄ = N. �

COROLLARY 277. The semidirect product NA is a closed subgroup diffeomorphic to its Lie
algebra n⊕a.

LEMMA 278. Let G be a Lie group, S,T < G two subgroups with Lie algebras s, t such that
g= s⊕ t. Then the map m : S×T →G given by (s, t) 7→ st is everywhere regular, and in particular
open.

PROOF. We compute the derviative. For X ∈ s, Y ∈ t we have sexp(X)t exp(Y )= sexp(X)exp(Adt Y )t.
It follows that dm(s,t)(s∗X , t∗Y ) = (s·)∗ (X +Adt Y )(·t)∗. Now Adt Y ∈ t as well, so X +Adt Y = 0
iff X = Adt Y = 0 iff X = Y = 0 and the map is injective. �

THEOREM 279. The multiplication map m : N×A×K→ G is a diffeomorphism onto.

PROOF. We already know this for the map N×A→ NA. Applying the Lemma to the multipli-
cation map NA×K→ G we see that it is �
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CHAPTER 6

Representation theory of real groups
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APPENDIX A

Functional Analysis

In this appendix we review the basics of topological vector spaces. References include Schae-
fer–Wolff.

A.1. Topological vector spaces

Let K be a non-discrete complete valued field

DEFINITION 280. A topological vector space is a vector space V over K equipped with a
topology so that (V,+) is a topological group and such that scalar multiplication is a continuous
map · : K×V →V .

PROPOSITION 281. A finite-dimensional K-vector space has a unique topology making it into
a TVS. In particular, if V,W are TVS with V finite-dimensional then HomK(V,W ) = Homcts(V,W )
and if V ⊂W then V is closed and complete. If K is locally compact then a TVS over K is locally
compact iff it is finite-dimensional.

DEFINITION 282. Fix a TVS V . Call C ⊂V :
(1) Balanced, if αv ∈C for all x ∈C, |α| ≤ 1
(2) Absorbing, if ∪t>0tC =V (that is, for all v ∈V there are u ∈C and t > 0 such that tu = v.
(3) Bounded, if for every open neighbourhood W 3 0 there is t > 0 such that C ⊂ tW .
(4) Totally bounded, if for every open neighbourhood W 3 0 there is a finite set {ui}

n
i=1 ⊂V

such that C ⊂ ∪i (vi +W ).

LEMMA 283. Every finite subset of a TVS is bounded.

LEMMA 284. Every TVS has a basis neighbourhoods of 0 which are balanced.

DEFINITION 285. A net {xα}α∈D ⊂V is called a Cauchy net if for every neighbourhood W of
0 there is δ ∈ D such that if α,β ≥ δ then xα − xβ ∈W . X ⊂V is complete if every Cauchy net in
X converges to a limit in X . V is quasi-complete if every closed bounded subset of X is complete.

LEMMA 286. In a quasi-complete TVS every totally bounded subset is relatively compact.

ASSUMPTION 287. K = R or C.

DEFINITION 288. Fix a TVS V . Call C⊂V convex, if tu+(1−t)v∈C for all u,v∈C, t ∈ [0,1].
Call V locally convex if any neighbourhood of 0 contains a convex neighbourhood of zero.

PROPOSITION 289. A TVS is locally convex iff its topology is determined by a family of semi-
norms.

LEMMA 290. Let V be locally convex, C ⊂ V be totally bounded. Then the convex hull and
balanced convex hull of C are also totally bounded.
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COROLLARY 291. Let V be locally convex and quasi-complete and let C ⊂ V be compact.
Then the closed convex hull of C is compact.

DEFINITION 292. The continuous dual of V is V ′ def
= Homcts (V,K).

THEOREM 293 (Hahn–Banach). Let V be locally convex, U ⊂ E a subspace, f ∈U ′ . Then f
has a continuous linear extension to V . In particular, V ′ separates the points of V .

A.2. Quasicomplete locally convex TVS

[based on Casseleman, Garrett]

PROPOSITION 294. An inverse limit of quasi-complete spaces is quasi-complete. The direct
product of a family of quasi-complete space is quasi-complete. The weak-* dual of a Banach space
is quasi-complete.

Let V be a locally convex TVS.

DEFINITION 295. Let Ω be a measureable space.
(1) Call f : Ω→V weakly measurable if ϕ ◦ f : Ω→ K is measurable for each ϕ ∈V ′. Let
(2) Let µ be a measurae on Ω and let f : Ω→ V be weakly measurable. Call v ∈ V the

Gelfand–Pettis integral of f (and write v=
∫

f dµ) if for every ϕ ∈V ′ ϕ ◦ f is µ-integrable
and we have

ϕ (v) =
∫

Ω

ϕ ◦ f dµ .

REMARK 296. Note that the integral clearly exists as an element of V ′′; the question is about
existence as an element of V . Since V ′ separates the points, it is also clear that the integral (if it
exists) is unique.

THEOREM 297. Let V be quasi-complete, let Ω be compact, µ a Radon measure, and let
f : Ω→V be continuous. Then

∫
f dµ exists.

PROOF. Wlog µ is a probability measure. In that case we also show
∫

f dµ lies in the closed
convex hull of f (Ω).

LEMMA 298. If V is finite-dimensional then
∫

f dµ exists and lies in the convex hull of f (Ω).

Write C for the closed convex hull of f (Ω). For every finite F ⊂ V ′ consider the continuous
linear map F : V → KF given by v 7→ (ϕ(v))

ϕ∈F . It maps C continuously onto the convex hull
of the image of F ◦ f . Now

∫
Ω
(F ◦ f )dµ exists in that convex hull, and we obtain a non-empty

closed convex subset

CF =

{
v ∈C | F(v) =

∫
Ω

(F ◦ f )dµ

}
.

Since
⋂r

i=1CFi = C⋃
iFi we see that this family has the finite intersection property, and it follows

that ⋂
F

CF

is non-empty. The (necessarily unique) point there is the desired integral. �
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A.3. Integration

A.4. Spectral theory and compact operators

A.5. Trace-class operators and the simple trace formula
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