Lior Silberman's Math 412: Problem Set 7 (due 10/3/2023)

M1. (Minimal polynomials)
Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), B=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0\end{array}\right)$.
(a) Find the minimal polynomial of A and show that the minimal polynomial of B is $x^{2}(x-1)^{2}$.
(b) Find a 3×3 matrix whose minimal polynomial is x^{2}.

M2. For each of A, B find its eigenvalues and the correpsonding generalized eigenspaces.

Triangular matrices

1. Let U be an upper-triangular square matrix with non-zero diagonal entries.
(a) Give a "backward-substitution" algorithm for solving $U \underline{x}=\underline{b}$ efficiently.
(b) Explicitely use your algorithm to solve $\left(\begin{array}{lll}1 & 4 & 5 \\ & 2 & 6 \\ & & 3\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}7 \\ 8 \\ 9\end{array}\right)$.
(c) For a general upper-triangular U give a formula for U^{-1}, proving in particular that U is invertible and that U^{-1} is again upper-triangular.
RMK It's possible to show that if $\mathcal{A} \subset M_{n}(F)$ is a subspace containing the identity matrix and closed under matrix multiplication, then the inverse of any matrix in \mathcal{A} belongs to \mathcal{A}. This applies, in particular, to the set of upper-triangular matrices.

The minimal polynomial

2. Let $D \in M_{n}(F)=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ be diagonal.
(a) For any polynomial $p \in F[x]$ show that $p(D)=\operatorname{diag}\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right)$.
(b) Show that the minimal polynomial of D is $m_{D}(x)=\prod_{j=1}^{r}\left(x-a_{i_{j}}\right)$ where $\left\{a_{i_{j}}\right\}_{j=1}^{r}$ is an enumeration of the distinct values among the a_{i}.
(c) Show that (over any field) the matrix B from problem P1 is not similar to a diagonal matrix.
(d) Now suppose that U is an upper-triangular matrix with diagonal D. Show that for any $p \in F[x], p(U)$ has diagonal $p(D)$. In particular, $m_{D} \mid m_{U}$.
3. Let $T \in \operatorname{End}(V)$ be diagonable. Show that every generalized eigenspace is simply an eigenspace.
4. Let $S \in \operatorname{End}(U), T \in \operatorname{End}(V)$. Let $S \oplus T \in \operatorname{End}(U \oplus V)$ be the "block-diagonal map".
(a) For $f \in F[x]$ show that $f(S \oplus T)=f(S) \oplus f(T)$.
(b) Show that $m_{S \oplus T}=\operatorname{lcm}\left(m_{S}, m_{T}\right)$ ("least common multiple": the polynomial of smallest degree which is a multiple of both).
(c) Conclude that $\operatorname{Spec}_{F}(S \oplus T)=\operatorname{Spec}_{F}(S) \cup \operatorname{Spec}_{F}(T)$.

RMK See also problem B below.

Supplementary problems

A. Let $R \in \operatorname{End}(U \oplus V)$ be "block-upper-triangular", in that $R(U) \subset U$.
(a) Define a "quotient linear map" $\bar{R} \in \operatorname{End}(U \oplus V / U)$.
(b) Let S be the restriction of R to U. Show that both $m_{S}, m_{\bar{R}}$ divide m_{R}.
(c) Let $f=\operatorname{lcm}\left[m_{S}, m_{\bar{R}}\right]$ and set $T=f(R)$. Show that $T(U)=\{\underline{0}\}$ and that $T(V) \subset U$.
(d) Show that $T^{2}=0$ and conclude that $f\left|m_{R}\right| f^{2}$.
(e) Show that $\operatorname{Spec}_{F}(R)=\operatorname{Spec}_{F}(S) \cup \operatorname{Spec}_{F}(\bar{R})$.
B. (Cholesky decomposition)
(a) Let A be a positive-definite square matrix. Show that $A=L L^{\dagger}$ for a unique lower-triangular matrix L with positive entries on the diagonal.
DEF For $\varepsilon \in \pm 1$ define $D^{\varepsilon} \in M_{n}(\mathbb{R})$ by $D_{i j}^{\varepsilon}=\left\{\begin{array}{ll}\varepsilon & j=i+\varepsilon \\ -\varepsilon & j=i \\ 0 & j \neq i, i+\varepsilon\end{array}\right.$ and let $A=-D^{-} D^{+}$be the (positive) discrete Laplace operator.
(b) To $f \in C^{\infty}(0,1)$ associate the vector $\underline{f} \in \mathbb{R}^{n}$ where $\underline{f}(i)=f\left(\frac{i}{n}\right)$. Show that $\frac{1}{n} D^{+} \underline{f}$ and $\frac{1}{n} D^{-} \underline{f}$ are both close to \underline{f}^{\prime} (so that both are discrete differentiation operators). Show that $\frac{1}{n^{2}} D^{-} D^{+}$is an approximation to the second derivative.
(c) Find a lower-triangular matrix L such that $L L^{\dagger}=A$.
C. (Rational canonical form part I) Let $T \in \operatorname{End}(V)$. For monic irreducible $p \in F[x]$ define $V_{p}=$ $\left\{\underline{v} \in V \mid \exists k: p(T)^{k} \underline{v}=\underline{0}\right\}$.
(a) Show that V_{p} is a T-invariant subspace of V and that $m_{T \mid V_{p}}=p^{k}$ for some $k \geq 0$, with $k \geq 1$ iff $V_{p} \neq\{\underline{0}\}$. Conclude that $p^{k} \mid m_{T}$.
(b) Show that if $\left\{p_{i}\right\}_{i=1}^{r} \subset F[x]$ are distinct monic irreducibles then the sum $\bigoplus_{i=1}^{r} V_{p_{i}}$ is direct.
(c) Let $\left\{p_{i}\right\}_{i=1}^{r} \subset F[x]$ be the prime factors of $m_{T}(x)$. Show that $V=\bigoplus_{i=1}^{r} V_{p_{i}}$.
(d) Suppose that $m_{T}(x)=\prod_{i=1}^{r} p_{i}^{k_{i}}(x)$ is the prime factorization of the minimal polynomial. Show that $V_{p_{i}}=\operatorname{Ker} p_{i}^{k_{i}}(T)$.

