Lior Silberman's Math 412: Problem Set 6 (due 3/3/2023)

- 1. Let $U \in M_n(F)$ be strictly upper-triangular, that is upper triangular with zeroes along the diagonal. Show that $U^n = 0$ and construct such U with $U^{n-1} \neq 0$.
- 2. Let V be a finite-dimensional vector space, $T \in End(V)$.
 - (*a) Show that the following statements are equivalent:

 $(1) \ \forall \underline{v} \in V : \exists k \ge 0 : T^{k} \underline{v} = \underline{0}; \quad (2) \ \exists k \ge 0 : \forall \underline{v} \in V : T^{k} \underline{v} = \underline{0}.$

- DEF A linear map satisfying (2) is called *nilpotent*. Example: see problem 1.
- SUPP For any infinite-dimensional V find an example of $T \in \text{End}(V)$ satisfying (1) but not (2). Such maps are called *locally nilpotent*.
- (b) Find nilpotent $A, B \in M_2(F)$ such that A + B isn't nilpotent.
- (c) Suppose that $A, B \in \text{End}(V)$ are nilpotent and that A, B commute. Show that A + B is nilpotent.