Lior Silberman's Math 412: Problem Set 2 (due 25/1/2023)

Practice

M1 Let $\left\{V_{i}\right\}_{i \in I}$ be a family of vector spaces, and let $A_{i} \in \operatorname{End}\left(V_{i}\right)=\operatorname{Hom}\left(V_{i}, V_{i}\right)$.
(a) Show that there is a unique element $\bigoplus_{i \in I} A_{i} \in \operatorname{End}\left(\bigoplus_{i \in I} V_{i}\right)$ whose restriction to the image of V_{i} in the sum is A_{i}.
(b) Carefully show that the matrix of $\bigoplus_{i \in I} A_{i}$ in an appropriate basis is block-diagonal.

Direct sums

1. (Counterexamples)
(a) Construct a vector space W and three subspaces U, V_{1}, V_{2} such that $W=U \oplus V_{1}=U \oplus V_{2}$ (internal direct sums) but $V_{1} \neq V_{2}$.
(b) Give an example of $V_{1}, V_{2}, V_{3} \subset W$ where $V_{i} \cap V_{j}=\{\underline{0}\}$ for every $i \neq j$ yet the sum $V_{1}+$ $V_{2}+V_{3}$ is not direct.
2. (Diagonability)

DEF A square matrix $A \in M_{n}(F)$ is diagonable (over F) if there exists an invertible matrix $S \in \mathrm{GL}_{n}(F)$ such that $S M S^{-1}$ is diagonal.
(a) Show that $A \in M_{n}(F)$ is diagonable iff there exist n one-dimensional subspaces $V_{i} \subset F^{n}$ such $F^{n}=\bigoplus_{i=1}^{n} V_{i}$ and $A\left(V_{i}\right) \subset V_{i}$ for all i.
(b) Let $T \in \operatorname{End}_{F}(V)$. For each $\lambda \in F$ let $V_{\lambda}=\operatorname{Ker}(T-\lambda)$ be the corresponding eigenspace. Let $\operatorname{Spec}_{F}(T)=\left\{\lambda \in F \mid V_{\lambda} \neq\{0\}\right\}$ be the set of eigenvalues of T. Show that the sum $\sum_{\lambda \in \operatorname{Spec}_{F}(T)} V_{\lambda}$ is direct.
(c) Call $T \in \operatorname{End}_{F}(V)$ diagonable if its matrix with respect to some basis is diagonable. Show that T is diagonable iff $\sum_{\lambda \in \operatorname{Spec}_{F}(T)} V_{\lambda}=V$.

Direct products

CONSTRUCTION. Let $\left\{V_{i}\right\}_{i \in I}$ be a (possibly infinite) family of vector spaces.
(1) The external direct product $\prod_{i \in I} V_{i}$ is the vector space whose underlying space is $\left\{f: I \rightarrow \bigcup_{i \in I} V_{i} \mid \forall i: f(i) \in V_{i}\right\}$ with the operations of pointwise addition and scalar multiplication.
(2) The external direct sum $\bigoplus_{i \in i} V_{i}$ is the subspace of finitely supported functions $\left\{f \in \prod_{i \in I} V_{i} \mid \#\left\{i \mid f(i) \neq \underline{0}_{V_{i}}\right\}<\infty\right\}$.
3. (Tedium)
(a) Show that the direct product is a vector space
(b) Show that the direct sum is a subspace.
(c) Let $\pi_{i}: \prod_{j \in I} V_{j} \rightarrow V_{i}$ be the projection on the i th coordinate $\left(\pi_{i}(f)=f(i)\right.$).

Show that π_{i} are surjective linear maps.
(d) Let $\sigma_{i}: V_{i} \rightarrow \prod_{i \in I} V_{i}$ be the map such that $\sigma_{i}(\underline{v})(j)=\left\{\begin{array}{ll}\underline{v} & j=i \\ \underline{0} & j \neq i\end{array}\right.$.

Show that σ_{i} are injective linear maps.
SUPP (Direct sums) Show that $\bigoplus_{i \in I} V_{i}$ is the internal direct sum of the images $\sigma_{i}\left(V_{i}\right)$ and conclude that direct sums of vector spaces exist.
4. (Meat)
(a) Let Z be another vector space, and suppose we have for each i a linear map $g_{i} \in \operatorname{Hom}\left(Z, V_{i}\right)$. Show that there is a unique $g \in \operatorname{Hom}\left(Z, \prod_{i} V_{i}\right)$ such that $\pi_{i} \circ g=g_{i}$ for all i.
DEF A vector space P equipped with maps $\pi_{i}^{\prime}: P \rightarrow V_{i}$ with the property of part (a) is called a direct product of the V_{i}.
RMK In this language part (a) shows that direct products exist.
(b) Show that any two direct products are uniquely isomorphic compatibly with the projection maps.
(c) Show that if P is a direct product then the maps π_{i}^{\prime} are surjective.

Quotients

5. Write $M_{n}(F)$ for the space of $n \times n$ matrices with entries in F. Let $\mathfrak{s l}_{n}(F)=\left\{A \in M_{n}(F) \mid \operatorname{Tr} A=0\right\}$ and let $\operatorname{pgl}_{n}(F)=M_{n}(F) / F \cdot I_{n}$ (matrices modulu scalar matrices). Suppose that n is invertible in F (equivalently, that the characteristic of F does not divide n). Show that the quotient map $M_{n}(F) \rightarrow \mathfrak{p g l}_{n}(F)$ restricts to an isomorphism $\mathfrak{s l}_{n}(F) \rightarrow \mathfrak{p g l}_{n}(F)$.
6. For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the Lipschitz constant of f is the (possibly infinite) number

$$
\|f\|_{\text {Lip }} \stackrel{\text { def }}{=} \sup \left\{\left.\frac{|f(x)-f(y)|}{|x-y|} \right\rvert\, x, y \in \mathbb{R}^{n}, x \neq y\right\} .
$$

Let $\operatorname{Lip}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid\|f\|_{\text {Lip }}<\infty\right\}$ be the space of Lipschitz functions.
PRA Show that $f \in \operatorname{Lip}\left(\mathbb{R}^{n}\right)$ iff there is C such that $|f(x)-f(y)| \leq C|x-y|$ for all $x, y \in \mathbb{R}^{n}$.
(a) Show that $\operatorname{Lip}\left(\mathbb{R}^{n}\right)$ is a subspace of the space of functions on \mathbb{R}^{n}.
(b) Let $\mathbb{1}$ be the constant function 1 . Show that $\|f\|_{\text {Lip }}$ descends to a function on $\operatorname{Lip}\left(\mathbb{R}^{n}\right) / \mathbb{R} \mathbb{1}$.
(c) For $\bar{f} \in \operatorname{Lip}\left(\mathbb{R}^{n}\right) / \mathbb{R} \mathbb{1}$ show that $\|\bar{f}\|_{\text {Lip }}=0$ iff $\bar{f}=0$.

Supplement: Quotients and complements

A. (Quotients and complements) Let W be a vector space and let $U \subset W$ be a subspace.
(a) Show that there exists another subspace $V \subset W$ such that $W=U \oplus V$.

DEF We say V is a complement for U (in W).
(b) Let V be a complement for U and let $\pi: W \rightarrow W / U$ be the quotient map. Show that the restriction of π to V is an isomorphism.
(c) Conclude that if V_{1}, V_{2} are both complements then $V_{1} \simeq V_{2}$ (c.f. problem P2)

REM A subspace will have many complements, while the quotient is "canonical".
B. (Structure of quotients) Let $V \subset W$ with quotient map $\pi: W \rightarrow W / V$.
(a) Show that mapping $U \mapsto \pi(U)$ gives a bijection between (1) the set of subspaces of W containing V and (2) the set of subspaces of W / V.
(b) (The universal property) Let Z be another vector space. Show that $f \mapsto f \circ \pi$ gives a linear bijection $\operatorname{Hom}(W / V, Z) \rightarrow\{g \in \operatorname{Hom}(W, Z) \mid V \subset \operatorname{Ker} g\}$.

Supplement: more universal properties

C. A free abelian group is a pair (F, S) where F is an abelian group, $S \subset F$, and ("universal property") for any abelian group A and any (set) map $f: S \rightarrow A$ there is a unique group homomorphism $\bar{f}: G \rightarrow A$ such that $\bar{f}(s)=f(s)$ for any $s \in S$. The size $\# S$ is called the rank of the free abelian group.
(a) Show that $(\mathbb{Z},\{1\})$ is a free abelian group.
(b) Show that $\left(\mathbb{Z}^{d},\left\{\underline{e}_{k}\right\}_{k=1}^{d}\right)$ is a free abelian group.
(c) Let $(F, S),\left(F^{\prime}, S^{\prime}\right)$ be free abelian groups and let $f: S \rightarrow S^{\prime}$ be a bijection. Show that f extends to a unique isomorphism $\bar{f}: F \rightarrow F^{\prime}$.
(d) Let (F, S) be a free abelian group. Show that S generates F.
(e) Show that every element of a free abelian group has infinite order.
D. Let $\left\{G_{i}\right\}_{i \in I}$ be groups. Show that the Cartesian product $\prod_{i} G_{i}$ with coordinate-wise operations and with the natural projections $\pi_{j}: \Pi_{i} G_{i} \rightarrow G_{j}$ is a direct product, in the sense that it has the universal property of problem 4 (with "vector spaces" replaced by "groups" and "linear maps" by "group homomorphisms".

RMK The "direct sum" object for groups is much more complicated. It is called the "free product".

Supplement: Lipschitz functions

Definition. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces, and let $f: X \rightarrow Y$ be a function. We say f is a Lipschitz function (or is "Lipschitz continuous") if for some C and for all $x, x^{\prime} \in X$ we have

$$
d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq C d_{X}\left(x, x^{\prime}\right)
$$

E. Write $\operatorname{Lip}(X, Y)$ for the space of Lipschitz continuous functions; for $f \in \operatorname{Lip}(X, Y)$ write $\|f\|_{\text {Lip }}=\sup \left\{\left.\frac{d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)}{d_{X}\left(x, x^{\prime}\right)} \right\rvert\, x \neq x^{\prime} \in X\right\}$ for its Lipschitz constant.
(a) Show that Lipschitz functions are, indeed, continuous (in fact uniformly continuous).
(b) Suppose Z is another metric space and that $g: Y \rightarrow Z$ is also Lipschitz. Show that $g \circ f$ is Lipschitz and that $\|g \circ f\|_{\text {Lip }} \leq\|g\|_{\text {Lip }}\|f\|_{\text {Lip }}$.
(c) Let $f \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$. Show that $\|f\|_{\text {Lip }}=\sup \left\{|\nabla f(x)|: x \in \mathbb{R}^{n}\right\}$.
(d) Generalize problem 6 to the case of $\operatorname{Lip}(X, \mathbb{R})$ where X is any metric space.
(e) Show that $\operatorname{Lip}(X, \mathbb{R}) / \mathbb{R} \mathbb{1}$ is a complete normed space for all metric spaces X.

