Lior Silberman's Math 412: Problem Set 1 (due 18/1/2023)

Practice problems numbered M1 etc), any sub-parts marked "PRAC" (practice) "SUPP" (supplementary) and supplementary problems articet probsummission.
M1. Show that the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x-2 y+z$ is a linear map. Show that the maps $(x, y, z) \mapsto 1$ and $(x, y, z) \mapsto x^{2}$ are not.
M2. Let F be a field, X a set. Carefully show that pointwise addition and scalar multiplication endow the set F^{X} of functions from X to F with the structure of an F-vectorspace.
M3. For $x \in X$ let $\delta_{x}: F^{X} \rightarrow F$ be evaluation at $x: \delta_{x}(f) \stackrel{\text { def }}{=} f(x)$. Show that each δ_{x} is a linear map. Meditate on the fact that the vector space structure was defined exactly so that δ_{x} are linear maps.

For submission

RMK This problem introduces a device for showing that sets of vectors are linearly independent. Make sure you understand how this argument works.

1. (Vector space axioms) Let $E=\left(E, 0_{E}, 1_{E},+_{E},{ }_{E}\right)$ be a field, and let $F \subset E$ be a subfield, in other words a subset which is closed under the operations and satsifies the field axioms. It is commonly said that E naturally has the structure of an F-vectorspace.
(a) Explicitely write the quadruple that was implicitely introduced in the statement of the problems.
(b) Verify the vector space axioms for this putative vector space structure.
(Hint: this problem is tedious rather than hard)
2. Let V be a vector space, $S \subset V$ a set of vectors. A minimal dependence in S is an equality $\sum_{i=1}^{m} a_{i} \underline{v}_{i}=\underline{0}$ where $\underline{v}_{i} \in S$ are distinct, a_{i} are scalars not all of which are zero, and $m \geq 1$ is as small as possible so that such $\left\{a_{i}\right\},\left\{\underline{v}_{i}\right\}$ exist.

- It is implicit in the following that either S is independent or it has a minimal dependence. Make this explicit in your mind (don't write this bit up).
PRAC Find a minimal dependence among $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)\right\} \subset \mathbb{R}^{3}$.
(a) Show that in a minimal dependence the a_{i} are all non-zero.
(b) Suppose that $\sum_{i=1}^{m} a_{i} \underline{v}_{i}$ and $\sum_{i=1}^{m} b_{i} \underline{v}_{i}$ are minimal dependences in S, involving the exact same set of vectors. Show that there is a non-zero scalar c such that $a_{i}=c b_{i}$.
(c) Let $T: V \rightarrow V$ be a linear map, and let $S \subset V$ be a set of (non-zero) eigenvectors of T, each corresponding to a distinct eigenvalue. Applying T to a minimal dependence in S obtain a contradiction to (c) and conclude that S is actually linearly independent.
$(* d)$ Let Γ be a group. The set $\operatorname{Hom}\left(\Gamma, \mathbb{C}^{\times}\right)$of group homomorphisms from Γ to the multiplicative group of nonzero complex numbers is called the set of quasicharacters of Γ (the notion of "character of a group" has an additional, different but related meaning, which is not at issue in this problem). Show that $\operatorname{Hom}\left(\Gamma, \mathbb{C}^{\times}\right)$is linearly independent in the space \mathbb{C}^{Γ} of functions from Γ to \mathbb{C}.

SUPP In the setting of problem 1, a field homomorphism is a map $\sigma: E \rightarrow E$ respecting the field operations. This map is an automorphism if it is invertible, equivalently if it is $1-1$ and onto. Let $\operatorname{Aut}(E)$ be the set of field automorphisms of E, and let

$$
\operatorname{Aut}_{F}(E)=\left\{\sigma \in \operatorname{Aut}(E) \mid \sigma \upharpoonright_{F}=\operatorname{id}_{F}\right\}
$$

(a) Show that $\operatorname{Aut}(E)$ is a group and that $\operatorname{Aut}_{F}(E)$ is a subgroup.
(b) Show that $\operatorname{Aut}(E) \subset E^{E}$ is linearly independent.
(Hint: See 2(d)).
(c) Thinking of E as an F-vectorspace as in problem 1, show that $\operatorname{Aut}_{F}(E) \subset \operatorname{Hom}_{F}(E, E)$. Use part (b) to show that $\operatorname{Aut}_{F}(E)$ is linearly independent, and conclude that $\# \operatorname{Aut}_{F}(E) \leq$ $\left(\operatorname{dim}_{F} E\right)^{2}$ if $\operatorname{dim}_{F} E<\infty$.
RMK The integer $[E: F]=\operatorname{dim}_{F} E$ is usually called the degree of the field extension E / F. With more careful work it is possible to obtain the bound \# $\operatorname{Aut}_{F}(E) \leq[E: F]$.
3. (Matrices associated to linear maps) Let V, W be vector spaces of dimensions n, m respectively. Let $T \in \operatorname{Hom}(V, W)$ be a linear map from V to W. Show that there are ordered bases $B=$ $\left\{\underline{v}_{j}\right\}_{j=1}^{n} \subset V$ and $C=\left\{\underline{w}_{i}\right\}_{i=1}^{m} \subset W$ and an integer $d \leq \min \{n, m\}$ such that the matrix $A=$ $\left(a_{i j}\right)$ of T with respect to those bases satisfies $a_{i j}=\left\{\begin{array}{ll}1 & i=j \leq d \\ 0 & \text { otherwise }\end{array}\right.$, that is has the form

$$
\left(\begin{array}{llllll}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)
$$

(Hint1: study some examples, such as the matrices $\left(\begin{array}{ll}1 & 1 \\ 1 & \end{array}\right)$ and $\left(\begin{array}{ll}2 & -4 \\ 1 & -2\end{array}\right)$) (Hint2: start your solution by choosing a basis for the image of T).

Extra credit: Finite fields

4. Let F be a field.
(a) Define a map $i:(\mathbb{Z},+) \rightarrow(F,+)$ by mapping $n \in \mathbb{Z}_{\geq 0}$ to the sum $1_{F}+\cdots+1_{F} n$ times. Show that this extends to a ring homomorphism.
DEF If the map t is injective we say that F is of characteristic zero.
(b) Suppose there is a non-zero $n \in \mathbb{Z}$ in the kernel of \imath. Show that the smallest positive such number is a prime number p.
DEF In that case we say that F is of characteristic p.
(c) Show that in that case t induces an isomorphism between the finite field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ and a subfield of F. In particular, there is a unique field of p elements up to isomorphism.
5. Let F be a field with finitely many elements. Show that there exists an integer $r \geq 1$ such that F has p^{r} elements.
(Hint: see problem 1)

RMK For every prime power $q=p^{r}$ there is a field \mathbb{F}_{q} with q elements, and two such fields are isomorphic. They are usually called finite fields, but also Galois fields after their discoverer.

Supplementary Problems I: A new field

A. Let $\mathbb{Q}(\sqrt{2})$ denote the set $\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}$.
(a) Show that $\mathbb{Q}(\sqrt{2})$ is a \mathbb{Q}-subspace of \mathbb{R}.
(b) Show that $\mathbb{Q}(\sqrt{2})$ is two-dimensional as a \mathbb{Q}-vector space. In fact, identify a basis.
(*c) Show that $\mathbb{Q}(\sqrt{2})$ is a field.
($* * \mathrm{~d}$) Let V be a vector space over $\mathbb{Q}(\sqrt{2})$ and suppose that $\operatorname{dim}_{\mathbb{Q}(\sqrt{2})} V=d$. Show that $\operatorname{dim}_{\mathbb{Q}} V=2 d$.

Supplementary Problems II: How physicists define vectors

Fix a field F.
B. (The general linear group)
(a) Let $\mathrm{GL}_{n}(F)$ denote the set of invertible $n \times n$ matrices with coefficients in F. Show that $\mathrm{GL}_{n}(F)$ forms a group with the operation of matrix multiplication.
(b) For a vector space V over F let $\operatorname{GL}(V)$ denote the set of invertible linear maps from V to itself. Show that GL (V) forms a group with the operation of composition.
(c) Suppose that $\operatorname{dim}_{F} V=n$ Show that $\mathrm{GL}_{n}(F) \simeq \mathrm{GL}(V)$ (hint: show that each of the two group is isomorphic to $\operatorname{GL}\left(F^{n}\right)$.
C. (Group actions) Let G be a group, X a set. An action of G on X is a map $\cdot: G \times X \rightarrow X$ such that $g \cdot(h \cdot x)=(g h) \cdot x$ and $1_{G} \cdot x=x$ for all $g, h \in G$ and $x \in X\left(1_{G}\right.$ is the identity element of G).
(a) Show that matrix-vector multiplication $(g, \underline{v}) \mapsto g \underline{v}$ defines an action of $G=\mathrm{GL}_{n}(F)$ on $X=F^{n}$.
(b) Let V be an n-dimensional vector space over F, and let \mathcal{B} be the set of ordered bases of V. For $g \in \mathrm{GL}_{n}(F)$ and $B=\left\{\underline{v}_{i}\right\}_{i=1}^{\operatorname{dim} V} \in \mathcal{B}$ set $g B=\left\{\sum_{j=1}^{n} g_{i j} \underline{v}_{i}\right\}_{j=1}^{n}$. Check that $g B \in \mathcal{B}$ and that $(g, B) \mapsto g B$ is an action of $\mathrm{GL}_{n}(F)$ on \mathcal{B}.
(c) Show that the action is transitive: for any $B, B^{\prime} \in \mathcal{B}$ there is $g \in \mathrm{GL}_{n}(F)$ such that $g B=B^{\prime}$.
(d) Show that the action is simply transitive: that the g from part (b) is unique.
D. (From the physics department) Let V be an n-dimensional vector space, and let \mathcal{B} be its set of bases. Given $\underline{u} \in V$ define a map $\phi_{\underline{u}}: \mathcal{B} \rightarrow F^{n}$ by setting $\phi_{\underline{u}}(B)=\underline{a}$ if $B=\left\{\underline{v}_{i}\right\}_{i=1}^{n}$ and $\underline{u}=\sum_{i=1}^{n} a_{i} \underline{v}_{i}$.
(a) Show that $\alpha \phi_{\underline{u}}+\phi_{\underline{u}^{\prime}}=\phi_{\alpha \underline{u}+\underline{u}^{\prime}}$. Conclude that the set $\left\{\phi_{\underline{u}}\right\}_{u \in V}$ forms a vector space over F.
(b) Show that the map $\phi_{\underline{u}}: \mathcal{B} \rightarrow F^{n}$ is equivariant for the actions of $\mathrm{B}(\mathrm{a}), \mathrm{B}(\mathrm{b})$, in that for each $g \in \mathrm{GL}_{n}(F), B \in \mathcal{B}, g\left(\phi_{\underline{u}}(B)\right)=\phi_{\underline{u}}(g B)$.
(c) Physicists define a "covariant vector" to be an equivariant map $\phi: \mathcal{B} \rightarrow F^{n}$. Let Φ be the set of covariant vectors. Show that the map $\underline{u} \mapsto \phi_{\underline{u}}$ defines an isomorphism $V \rightarrow \Phi$. (Hint: define a map $\Phi \rightarrow V$ by fixing a basis $B=\left\{\underline{v}_{i}\right\}_{i=1}^{n}$ and mapping $\phi \mapsto \sum_{i=1}^{n} a_{i} \underline{v}_{i}$ if $\left.\phi(B)=\underline{a}\right)$.
(d) Physicists define a "contravariant vector" to be a map $\phi: \mathcal{B} \rightarrow F^{n}$ such that $\phi(g B)=$ ${ }^{t} g^{-1} \cdot(\phi(B))$. Verify that $(g, \underline{a}) \mapsto{ }^{t} g^{-1} \underline{a}$ defines an action of $\mathrm{GL}_{n}(F)$ on F^{n}, that the set Φ^{\prime} of contravariant vectors is a vector space, and that it is naturally isomorphic to the dual vector space V^{\prime} of V.

Supplementary Problems III: Fun in positive characteristic

E. Let F be a field of characteristic 2 (that is, $1_{F}+1_{F}=0_{F}$).
(a) Show that for all $x, y \in F$ we have $x+x=0_{F}$ and $(x+y)^{2}=x^{2}+y^{2}$.
(b) Considering F as a vector space over \mathbb{F}_{2} as in problem 5, show that the field automorphism Frob: $F \rightarrow F$ given by $\operatorname{Frob}(x)=x^{2}$ is an \mathbb{F}_{2}-linear map.
(c) Suppose that the map $x \mapsto x^{2}$ is actually F-linear and not only \mathbb{F}_{2}-linear. Show that $F=\mathbb{F}_{2}$. RMK Compare your answer with practice problem 1.
F. (This problem requires a bit of number theory) Now let F have characteristic $p>0$. Show that the Frobenius endomorphism $x \mapsto x^{p}$ is \mathbb{F}_{p}-linear.

