Math 100C - SOLUTIONS TO WORKSHEET 11 MULTIVARIABLE OPTIMIZATION

1. CRITICAL POINTS; MULTIVARIABLE OPTIMIZATION

- (1) How many critical points does $f(x, y) = x^2 x^4 + y^2$ have? **Solution:** $\frac{\partial f}{\partial x}(x, y) = 2x 4x^3 = 2x(1 2x^2)$ while $\frac{\partial f}{\partial y} = 2y$. Thus $\frac{\partial f}{\partial y} = 0$ only when y = 0while $\frac{\partial f}{\partial x} = 0$ when $x \in \left\{0, \pm \frac{1}{\sqrt{2}}\right\}$. Thus there are three critical points: $(0,0), \left(0, \frac{1}{\sqrt{2}}\right), \left(0, -\frac{1}{\sqrt{2}}\right)$. (2) Find the critical points of $f(x, y) = x^2 - x^4 + xy + y^2$. **Solution:** Now $\frac{\partial f}{\partial x}(x, y) = 2x - 4x^3 + y$ while $\frac{\partial f}{\partial y} = x + 2y$. At a critical point we have $\frac{\partial f}{\partial y} = 0$ so $y = -\frac{1}{2}x$ and also $\frac{\partial f}{\partial x}(x, y) = 0$ so $2x - 4x^3 + y = 0$. Substituting $y = -\frac{1}{2}x$ we get $\frac{3}{2}x - 4x^3 = 0$ or
- $-4x\left(x^2-\frac{3}{8}\right)=0$ so we have a critical point when $x \in \left\{0, \pm \sqrt{\frac{3}{8}} = \pm \frac{1}{2}\sqrt{\frac{3}{2}}\right\}$ and hence at the points
- $\begin{cases} (0,0), \left(\frac{1}{2}\sqrt{\frac{3}{2}}, -\frac{1}{4}\sqrt{\frac{3}{2}}\right), \left(-\frac{1}{2}\sqrt{\frac{3}{2}}, \frac{1}{4}\sqrt{\frac{3}{2}}\right) \\ \end{cases}. \\ (3) \text{ (MATH 105 Final, 2013) Find the critical points of } f(x,y) = xye^{-2x-y}. \\ \textbf{Solution:} \quad \frac{\partial f}{\partial x}(x,y) = ye^{-2x-y} 2xye^{-2x-y} = y(1-2x)e^{-2x-y} \text{ while } \frac{\partial f}{\partial y}(x,y) = xe^{-2x-y} xye^{-2x-y} = x(1-y)e^{-2x-y}. \\ \text{Since } e^{-2x-y} \neq 0 \text{ everywhere, the critical points are the solutions to } \end{cases}$ the system of equations

$$\begin{cases} y(1-2x) = 0\\ x(1-y) = 0 \end{cases}$$

Starting with the second equation we either have x = 0 or y = 1. In the first case the first equation reads y = 0 and we get the critical point (0,0). In the second case the first equation reads 1 - 2x = 0and we get the critical point $(\frac{1}{2}, 1)$.

- (4)
- (a) Let $f(x,y) = 4x^2 + 8y^2 + 7$. Find the critical point(s) of f(x,y), and determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or neither ("saddle point").

Solution: $\frac{\partial f}{\partial x} = 8x$ and $\frac{\partial f}{\partial y} = 16y$. The only point where both vanish is where x = y = 0 where f(0,0) = 7. Since $4x^2 + 8y^2 \ge 0$ for all x, y we have $f(x,y) \ge 7$ for all x, y so this point is the global minimum, and in particular a local minimum.

(b) (MATH 105 Final, 2017) Let $f(x,y) = -4x^2 + 8y^2 - 3$. Find the critical point(s) of f(x,y), and determine (if possible) whether each critical point corresponds to a local maximum, local minimum, or neither ("saddle point").

Solution: $\frac{\partial f}{\partial x} = -8x$ and $\frac{\partial f}{\partial y} = 16y$. The only point where both vanish is where x = y = 0 where f(0,0) = -3. We have a local *maximum* along the x axis (for constant y the parabola $-4x^2 + (8y^2 - 3)$ is concave down) but a local *minimum* along the y axis (for constant x the parabola $8y^2 - (4x^2 + 3)$ is concave up), so this is a saddle point.

(5) Find the critical points of $(7x + 3y + 2y^2)e^{-x-y}$. Solution: Since $\frac{\partial f}{\partial x} = e^{-x-y}(7 - 7x - 3y - 2y^2)$ and $\frac{\partial f}{\partial y} = e^{-x-y}(3 + 4y - 7x - 3y - 2y^2)$ the critical points are at

$$\begin{cases} 7x + 3y + 2y^2 &= 7\\ 7x + 3y + 2y^2 &= 3 + 4y \end{cases}$$

Date: 1/12/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

At a solution of this system we must have 3 + 4y = 7 so y = 1 and then $7x = 7 - 3y - 2y^2$ forces $x = \frac{2}{7}$, so the only critical point is at $(\frac{2}{7}, 1)$.

2. Optimization

(6) Find the maximum of $(7x + 3y + 2y^2)e^{-x-y}$ for $x \ge 0, y \ge 0$,

Solution: We start with the boundary. If y = 0 we have $f(x, 0) = 7xe^{-x}$, the derivative of which is $7e^{-x} - 7xe^{-x} = 7(1-x)e^{-x}$ which only vanishes at x = 1. The maximum is then at x = 1 where the value is $\frac{7}{e}$. If x = 0 we get $f(0, y) = (3y + 2y^2)e^{-y}$ with derivative $(3 + 4y - 3y - 2y^2)e^{-y} = -(2y^2 - y - 3)e^{-y}$. This vanishes at $y = \frac{1\pm\sqrt{25}}{4} = \frac{3}{2}, -1$, so at $y = \frac{3}{2}$. Since f(0, 0) = 0, $f(0, \frac{3}{2}) = 9e^{-3/2} > 0$ and f(0, y) is negative for large y, the maximum on this boundary is at $9e^{-3/2}$. Finally the function tends to 0 if $x \to \infty$ or $y \to \infty$ (the exponential always wins) so there will be a maximum which, if it occurs at the interior, must occur at a critical point. We already say that the only critical point is at $(\frac{2}{7}, 1)$, and evaluation gives $f(\frac{2}{7}, 1) = 7e^{-9/7} < \frac{7}{e}$. The maximum is therefore at the larger of the boundary values. Now

$$\left(\frac{7}{e} / \frac{9}{e^{3/2}}\right)^2 = \frac{7^2 e}{9^2} > \frac{49 \cdot 2}{81} > 1$$

so $\frac{7}{e}$ is the largest value, hence the maximum. (With a calculator we could also check that $\frac{7}{e} \approx 2.58$,

- $\frac{9}{e^{3/2}} \approx 2.01$, and $\frac{7}{e^{9/7}} \approx 1.94$). (7) A company can make widgets of varying quality. The cost of making q widgets of quality t is $C = 3t^2 + \sqrt{t} \cdot q$. At price p the company can sell $q = \frac{t-p}{3}$ widgets.
 - (a) Write an expression for the profit function f(q, t). **Solution:** To sell q widgets the price must be p = t - 3q, so the revenue will be $R = qp = tq - 3q^2$ and the profit will be

$$f(q,t) = R - C = tq - 3q^2 - 3t^2 + \sqrt{t} \cdot q$$
.

(b) How many widgets of what quality should the company make to maximize profits? Solution: We need to maximize

$$f(q,t) = tq - 3q^2 - 3t^2 + \sqrt{t} \cdot q$$

Now $\frac{\partial f}{\partial q} = t - 6q + \sqrt{t}$ while $\frac{\partial f}{\partial t} = q \left(1 + \frac{1}{2\sqrt{t}}\right) - 6t$. From the first equation we find that at fixed quality we maximize profits at $q = \frac{t + \sqrt{t}}{6}$. As $t \to \infty q \sim \frac{t}{6}$ so

$$\begin{split} f(q,t) &\sim t \cdot \frac{t}{6} - 3\left(\frac{t}{6}\right)^2 - 3t^2 + \sqrt{t}\frac{t}{6} \\ &\sim -\left(3 - \frac{1}{6}\right)t^2 \to -\infty \end{split}$$

so there is a limit to the qualities at which we will make a profit. Conversely at quality 0 we have $f(q,0) = -3q^2 \leq 0$ so we must have some positive quality to make a profit, and the maximum will occur at a critical point. Plugging $q = \frac{t+\sqrt{t}}{6}$ into $\frac{\partial f}{\partial t} = 0$ we get the equation

$$\frac{1}{6}\left(t+\sqrt{t}\right)\left(1+\frac{1}{2\sqrt{t}}\right)-6t=0$$

that is

$$t + \frac{3}{2}\sqrt{t} + \frac{1}{2} = 36t$$

or

$$70\left(\sqrt{t}\right)^2 - 3\sqrt{t} - 1 = 0$$

which has the solution

$$\sqrt{t} = \frac{3 \pm \sqrt{9 + 4 \cdot 70}}{2 \cdot 70} = \frac{3 \pm \sqrt{289}}{140}$$
$$= \frac{20}{140} = \frac{1}{7}$$

since we must have $\sqrt{t} > 0$. At this value we have $q = \frac{8}{49 \cdot 6} = \frac{4}{3 \cdot 49}$ and $f(q,t) = \frac{7}{3 \cdot 49^2} = \frac{1}{3 \cdot 343} > 0$, so this is indeed the maximum.

3. Constrained optimization

(8) (MATH 105 final, 2017) Use the method of Lagrange Multipliers to find the maximum value of the utility function $U = f(x, y) = 16x^{\frac{1}{4}}y^{\frac{3}{4}}$, subject to the constraint G(x, y) = 50x + 100y - 500,000 = 0, where $x \ge 0$ and $y \ge 0$.

Solution: If x = 0 or y = 0 we have f(x, y) = 0 while if x, y > 0 we have f(x, y) > 0 so the maximum must be in the interior of the domain (and occur at a critical point). By the method of Lagrange Multipliers the maximum occurs at a point x, y where

$$\begin{cases} 4x^{-3/4}y^{3/4} = 50\lambda\\ 12x^{1/4}y^{-1/4} = 100\lambda\\ 50x + 100y - 500,000 = 0 \end{cases}$$

If $\lambda = 0$ then either x = 0 or y = 0 by the first two equations, which isn't the case, so $\lambda \neq 0$ and we can divide the second equation by the first. We get:

$$3\frac{x}{y} = 2\,,$$

that is 3x = 2y. Writing the equation of the constraint as x + 2y = 10,000 we see that we must have 4x = 10,000 so x = 2,500 and $y = \frac{3x}{2} = 3,750$. Since this is the only solution it must be the maximum, and the value is

$$f(2500, 3750) = 16 \cdot \left(\frac{10^4}{4}\right)^{1/4} \left(3\frac{10^4}{8}\right)^{3/4}$$
$$= 2^4 \frac{10}{\sqrt{2}} \cdot 10^3 \cdot 3^{3/4} \cdot 2^{-9/4} = 10^4 \cdot 2^{\frac{5}{4}} \cdot 3^{3/4}$$
$$= 20,000 \times 2^{1/4} 3^{3/4}.$$

(9) Labour-Leisure model: a person can choose to spend L hours a day not working ("leisure"), working 24 - L hours with way w. Suppose their fixed income is V dollars per day. Their consumption of goods is them C = w(24 - L) + V, equivalenly C + wL = 24w + V (here C, L are variables while w, V are constants). If their utility function is U = U(C, L) find a system of equations for maximum utility.

Solution: We need to maximize U(C, L) subject to the *budget constraint* C + wL = 24w + V, so we get the system

$$\begin{cases} \frac{\partial U}{\partial C} &= \lambda\\ \frac{\partial U}{\partial L} &= \lambda w\\ C + wL &= 24w + V \end{cases}$$

4. Combination problems

(10) Find the maximum and minimum values of $f(x, y) = -x^2 + 8y$ in the disc $R = \{x^2 + y^2 \le 25\}$. **Solution:** $\frac{\partial f}{\partial x} = -2x$ and $\frac{\partial f}{\partial y} = 8$, so f has no critical points in the interior of the disc (or anywhere, for that matter), and the minimum and maximum must occur on the boundary, where $x^{2} + y^{2} = 25$ or equivalently $G(x, y) = x^{2} + y^{2} - 25 = 0$. By the method of Lagrange multipliers the extrema on the boundary occur where

$$\begin{cases} -2x &= \lambda(2x) \\ 8 &= \lambda(2y) \\ x^2 + y^2 &= 25 \,. \end{cases}$$

We can rewrite the first equation $2x(\lambda + 1) = 0$ so either x = 0 or $\lambda = -1$. In the first case we have $y = \pm 5$ and the function values are f(0,5) = 40, f(0,-5) = -40. In the second case the second equation reads 8 = -2y so y = -4 and $x = \pm\sqrt{25 - 16} = \pm 3$. At these points we have

$$f(\pm 3, -4) = -9 + 8 \cdot (-4)$$

= -41.

The maximum of f is therefore 40, attained at (0, 5), and the minimum is -41, attained at the two points $(\pm 3, -4)$.

(11) (MATH 105 final, 2015) Find the maximum and minimum values of $f(x,y) = (x-1)^2 + (y+1)^2$ in

the disc $R = \{x^2 + y^2 \le 4\}$. **Solution:** We have $\frac{\partial f}{\partial x} = 2(x-1)$ and $\frac{\partial f}{\partial y} = 2(y+1)$ so the only critical point is (1, -1) where f(1, -1) = 0. Since $f(x, y) \ge 0$ for all x, y this must be the global minimum. The maximum must therefore occur on the boundary where $x^2 + y^2 = 4$ so let $G(x, y) = x^2 + y^2 - 4$. By the method of Lagrange multipliers the maximum on the boundary will occur at a point where

$$\begin{cases} 2(x-1) &= \lambda(2x) \\ 2(y+1) &= \lambda(2y) \\ x^2 + y^2 &= 4 \end{cases}$$

Since x = 0 does not solve the first equation we can divide by 2x to get $1 - \frac{1}{x} = \lambda$ and similarly from the second equation we get $1 + \frac{1}{y} = \lambda$. Subtracting these two equations gives $\frac{1}{x} + \frac{1}{y} = 0$ so y = -x. Plugging this into the constraint we get $2x^2 = 4$ so $x = \pm \sqrt{2}$ and there are two constrained critical points on the boundary, $(\sqrt{2}, -\sqrt{2})$ and $(-\sqrt{2}, \sqrt{2})$. We have

$$f\left(\sqrt{2}, -\sqrt{2}\right) = \left(\sqrt{2} - 1\right)^2 + \left(-\sqrt{2} + 1\right)^2 = 2\left(\sqrt{2} - 1\right)^2 = 2\left(3 - 2\sqrt{2}\right)$$
$$f\left(-\sqrt{2}, \sqrt{2}\right) = \left(-\sqrt{2} - 1\right)^2 + \left(\sqrt{2} + 1\right)^2 = 2\left(\sqrt{2} + 1\right)^2 = 2\left(3 + 2\sqrt{2}\right)$$

so clearly $(\sqrt{2}, -\sqrt{2})$ is the minimum of f on the boundary and $f(-\sqrt{2}, \sqrt{2})$ is the maximum of f on the boundary, which (as we saw before) was the maximum on the domain. In summary: the minimum value of f on R is 0, attained at (1, -1), and the maximum value is $6 + 4\sqrt{2}$, attained at $(-\sqrt{2},\sqrt{2}).$