Math 100C - SOLUTIONS TO WORKSHEET 10 MULTIVARIABLE CALCULUS

1. Plotting in three dimensions

(1) Plot the points $(2,1,3),(-2,2,2)$ on the axes provided.
(2) Let $f(x, y)=e^{x^{2}+y^{2}}$.
(a) What are $f(0,-1)$? $f(1,2)$? Plot the point $(0,1, f(0,1))$ on the axes provided.
(b) What is the domain of f (that is: for what (x, y) values does f make sense?
Solution: f makes sense for all (x, y) - equivalenly that is on the plane \mathbb{R}^{2}.
(c) What is the range of f (that is: what values does it take)? Solution: $x^{2}+y^{2}$ takes all possible nonegative values, so $e^{x^{2}+y^{2}}$ takes all values in $[1, \infty)$.
(3) What would the graph of $z=\sqrt{1-x^{2}-y^{2}}$ look like?

Solution: This is the same as $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$,
 so the graph would be the upper half of the sphere of radius 1 .
(4) Which plane is this?

Solution: (C) $z=3$.

(A) $x=3$
(B) $y=3$
(C) $z=3$
(D) none
(E) not sure

2. Partial derivatives

(5) (a) Let $f(x)=2 x^{2}-a^{2}-2$. What is $\frac{d f}{d x}$?

Solution: $\frac{d f}{d x}=4 x$.
(b) Let $f(x)=2 x^{2}-y^{2}-2$ where y is a constant. What is $\frac{d f}{d x}$?

Solution: $\frac{d f}{d x}=4 x$.
(c) Let $f(x, y)=2 x^{2}-y^{2}-2$. What is the rate of change of f as a function of x if we keep y constant?
Solution: $\quad \frac{\partial f}{\partial x}=4 x$.

[^0](d) What is $\frac{\partial f}{\partial y}$?

Solution: $\frac{\partial f}{\partial y}=-2 y$.
(6) Find the partial derivatives with respect to both x, y of
(a) $g(x, y)=3 y^{2} \sin (x+3)$

Solution: $\frac{\partial g}{\partial x}=3 y^{2} \cos (x+3)$ (note that $3 y^{2}$ is constant if y is) while $\frac{\partial g}{\partial y}=6 y \sin (x+3)$ (note that $\cos (x+3)$ is constant when x is constant).
(b) $h(x, y)=y e^{A x y}+B$

Solution: We have $\frac{\partial h}{\partial x} \stackrel{\text { linear }}{=} y\left(\frac{\partial}{\partial x} e^{A x y}\right)+\frac{\partial}{\partial x} B \stackrel{\text { chain }}{=} y \cdot A y \cdot e^{A x y}=A y^{2} e^{A x y}$ and $\frac{\partial h}{\partial y} \stackrel{\text { pdt }}{=}\left(\frac{\partial}{\partial y} y\right) \cdot e^{A x y}+y\left(\frac{\partial}{\partial y} e^{A x y}\right)=e^{A x y}+A x y e^{A x y}=e^{A x y}(1+A x y)$.
(7) One model in labour economics has a production function $Q=\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{1 / \delta}$. Here $\alpha, \delta>0$ are parameters $(\alpha<1), K$ is the capital and E is the labour.
(a) Find the marginal product of capital: $\frac{\partial Q}{\partial K}=$

Solution: $\quad \frac{\partial Q}{\partial K}=\frac{1}{\delta}\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{\frac{1}{\delta}-1} \alpha \delta K^{\delta-1}=\alpha\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{\frac{1}{\delta}-1} K^{\delta-1}$.
(b) Find the marginal product of labour: $\frac{\partial Q}{\partial E}=$

Solution: $\quad \frac{\partial Q}{\partial E}=\frac{1}{\delta}\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{\frac{1}{\delta}-1}(1-\alpha) \delta E^{\delta-1}=(1-\alpha)\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{\frac{1}{\delta}-1} E^{\delta-1}$.
(8) We can also compute second derivatives. For example $f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2}}{\partial y \partial x} f$. Evaluate:
(a) $h_{x x}=\frac{\partial^{2} h}{\partial x^{2}}=$

Solution: We have $\frac{\partial^{2} h}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial h}{\partial x}\right)=\frac{\partial}{\partial x}\left(A y^{2} e^{A x y}\right)=A^{2} y^{3} e^{A x y}$.
(b) $h_{x y}=\frac{\partial^{2} h}{\partial y \partial x}=$

Solution: We have $\frac{\partial^{2} h}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial h}{\partial x}\right)=\frac{\partial}{\partial y}\left(A y^{2} e^{A x y}\right)=2 A y e^{A x y}+A^{2} x y^{2} e^{A x y}=\left(2 A y+A^{2} x y^{2}\right) e^{A x y}$.
(c) $h_{y x}=\frac{\partial^{2} h}{\partial x \partial y}=$

Solution: We have $\frac{\partial^{2} h}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial h}{\partial y}\right)=\frac{\partial}{\partial x}\left(e^{A x y}(1+A x y)\right)=A y e^{A x y}(1+A x y)+e^{A x y} \cdot A y=$ $e^{A x y}\left(A^{2} x y^{2}+2 A y\right)$.
(d) $h_{y y}=\frac{\partial^{2} h}{\partial y^{2}}=$

Solution: We have $\frac{\partial^{2} h}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial h}{\partial y}\right)=\frac{\partial}{\partial y}\left(e^{A x y}(1+A x y)\right)=A x e^{x y}(1+A x y)+e^{A x y}(A x)=$ $A x(2+A x y) e^{A x}$.
(9) You stand in the middle of a north-south street (say Health Sciences Mall). Let the x axis run along the street (say oriented toward the south), and let the y axis run across the street. Let $z=z(x, y)$ denote the height of the street surface above sea level.
(a) What does $\frac{\partial z}{\partial y}=0$ say about the street?

Solution: The street surface is level.
(b) What does $\frac{\partial z}{\partial x}=0.15$ say about the street?

Solution: The street has a 15% grade sloping up toward the south: for each $1 m$ we walk south we gain 0.15 m in altitude.
(c) You want to follow the street downhill. Which way should you go?

Solution: Since altitude increases with increasing x (i.e. as you go south), you should go north.
3. Bonus (nONEXAMINABLE!): MULTIVARIABLE LINEAR APPROXIMATION
(10)

[^0]: Date: $24 / 11 / 2022$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

