Math 100C – SOLUTIONS TO WORKSHEET 10 MULTIVARIABLE CALCULUS

1. PLOTTING IN THREE DIMENSIONS

- (1) Plot the points (2, 1, 3), (-2, 2, 2) on the axes provided.
- (2) Let $f(x, y) = e^{x^2 + y^2}$.
 - (a) What are f(0,-1)? f(1,2)? Plot the point (0,1,f(0,1)) on the axes provided.
 - (b) What is the *domain* of f (that is: for what (x, y) values does f make sense?
 - **Solution:** f makes sense for all (x, y) equivalency that is on the plane \mathbb{R}^2 .
 - (c) What is the range of f (that is: what values does it take)? Solution: $x^2 + y^2$ takes all possible nonegative values, so $e^{x^2+y^2}$ takes all values in $[1, \infty)$.
- (3) What would the graph of $z = \sqrt{1 x^2 y^2}$ look like? **Solution:** This is the same as $x^2 + y^2 + z^2 = 1$ with $z \ge 0$,
- so the graph would be the upper half of the sphere of radius 1. (4) Which plane is this?

2. Partial derivatives

- (5) (a) Let $f(x) = 2x^2 a^2 2$. What is $\frac{df}{dx}$? Solution: $\frac{df}{dx} = 4x$.
 - Solution: $\frac{df}{dx} = 4x$. (b) Let $f(x) = 2x^2 - y^2 - 2$ where y is a constant. What is $\frac{df}{dx}$? Solution: $\frac{df}{dx} = 4x$.
 - Solution: $\frac{df}{dx} = 4x$. (c) Let $f(x,y) = 2x^2 - y^2 - 2$. What is the rate of change of f as a function of x if we keep y constant? Solution: $\frac{\partial f}{\partial x} = 4x$.

Date: 24/11/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(d) What is $\frac{\partial f}{\partial y}$?

Solution: $\frac{\partial f}{\partial y} = -2y.$

- (6) Find the partial derivatives with respect to both x, y of
 - (a) $g(x,y) = 3y^2 \sin(x+3)$ **Solution:** $\frac{\partial g}{\partial x} = 3y^2 \cos(x+3)$ (note that $3y^2$ is *constant* if y is) while $\frac{\partial g}{\partial y} = 6y \sin(x+3)$ (note that $\cos(x+3)$ is constant when x is constant). (b) $h(x,y) = ye^{Axy} + B$

Solution: We have
$$\frac{\partial h}{\partial x} \stackrel{\text{linear}}{=} y \left(\frac{\partial}{\partial x} e^{Axy} \right) + \frac{\partial}{\partial x} B \stackrel{\text{chain}}{=} y \cdot Ay \cdot e^{Axy} = Ay^2 e^{Axy}$$

and $\frac{\partial h}{\partial y} \stackrel{\text{pdt}}{=} \left(\frac{\partial}{\partial y} y \right) \cdot e^{Axy} + y \left(\frac{\partial}{\partial y} e^{Axy} \right) = e^{Axy} + Axy e^{Axy} = e^{Axy} (1 + Axy).$

- (7) One model in labour economics has a production function $Q = \left[\alpha K^{\delta} + (1-\alpha)E^{\delta}\right]^{1/\delta}$. Here $\alpha, \delta > 0$ are parameters ($\alpha < 1$), K is the capital and E is the labour.

(a) Find the marginal product of capital: ^{∂Q}/_{∂K} = Solution: ^{∂Q}/_{∂K} = ¹/_δ [αK^δ + (1 - α)E^δ]^{¹/_δ - 1}/_{αδK^{δ-1}} αδK^{δ-1} = α [αK^δ + (1 - α)E^δ]^{¹/_δ - 1}K^{δ-1}.
(b) Find the marginal product of labour: ^{∂Q}/_{∂E} =

Solution:
$$\frac{\partial Q}{\partial E} = \frac{1}{\delta} \left[\alpha K^{\delta} + (1-\alpha) E^{\delta} \right]^{\frac{1}{\delta}-1} (1-\alpha) \delta E^{\delta-1} = (1-\alpha) \left[\alpha K^{\delta} + (1-\alpha) E^{\delta} \right]^{\frac{1}{\delta}-1} E^{\delta-1}.$$

(8) We can also compute second derivatives. For example $f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2}{\partial y \partial x} f$. Evaluate:

(a) $h_{xx} = \frac{\partial^2 h}{\partial x^2} =$ **Solution:** We have $\frac{\partial^2 h}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial h}{\partial x} \right) = \frac{\partial}{\partial x} \left(A y^2 e^{Axy} \right) = A^2 y^3 e^{Axy}$. (b) $h_{xy} = \frac{\partial^2 h}{\partial y \partial x} =$

Solution: We have $\frac{\partial^2 h}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial h}{\partial x} \right) = \frac{\partial}{\partial y} \left(Ay^2 e^{Axy} \right) = 2Aye^{Axy} + A^2xy^2 e^{Axy} = \left(2Ay + A^2xy^2 \right) e^{Axy}$.

- (c) $h_{yx} = \frac{\partial^2 h}{\partial x \partial y} =$ **Solution:** We have $\frac{\partial^2 h}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial h}{\partial y} \right) = \frac{\partial}{\partial x} \left(e^{Axy} \left(1 + Axy \right) \right) = Ay e^{Axy} \left(1 + Axy \right) + e^{Axy} \cdot Ay = Ay e^{Axy} \cdot Ay = Ay$ $e^{Axy} \left(A^2 x y^2 + 2Ay \right).$
- (d) $h_{yy} = \frac{\partial^2 h}{\partial y^2} =$ **Solution:** We have $\frac{\partial^2 h}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial h}{\partial y} \right) = \frac{\partial}{\partial y} \left(e^{Axy} \left(1 + Axy \right) \right) = Axe^{xy} \left(1 + Axy \right) + e^{Axy} \left(Ax \right) = Axe^{xy} \left(1 + Axy \right) + e^{Axy} \left(Ax \right) = Axe^{xy} \left(1 + Axy \right) + e^{Axy} \left(Ax \right) = Axe^{xy} \left(Ax \right) = Axe^$

 $Ax (2 + Axy) e^{Ax}$.

- (9) You stand in the middle of a north-south street (say Health Sciences Mall). Let the x axis run along the street (say oriented toward the south), and let the y axis run across the street. Let z = z(x, y)denote the height of the street surface above sea level.
 - (a) What does $\frac{\partial z}{\partial y} = 0$ say about the street? Solution: The street surface is level.

- (b) What does $\frac{\partial z}{\partial x} = 0.15$ say about the street? The street has a 15% grade sloping up toward the south: for each 1m we walk Solution: south we gain 0.15m in altitude.
- (c) You want to follow the street downhill. Which way should you go? Solution: Since altitude increases with increasing x (i.e. as you go south), you should go north.

3. Bonus (**NONEXAMINABLE!**): MULTIVARIABLE LINEAR APPROXIMATION

(10)