Math 100C - SOLUTIONS TO WORKSHEET 9 EULER'S METHOD

1. Compound interest (Bernoulli 1683)

(1) Suppose you have a $\$ 100$ bank balance which earns an annual interest rate of 30%.
(a) Suppose the interest is paid once, at the end of the year. How much would your balance be at that time?
Solution: $\quad \$ 100+0.3 \times \$ 100=\$ 100 \cdot(1+0.3)=\$ 130$.
(b) Suppose instead that interest is paid four times a year. What is the quarterly interest rate? What would the balance be at the end of the first quarter?
Solution: The interest reate is $\frac{30 \%}{4}=7.5 \%$ so the balance would be $\$ 100+0.075 \cdot \$ 100=$ 107.5.
(c) Suppose further that interest is compounded: after every quarter the interest is added to the balance. What would be the balance at the end of the year?
Solution: $\quad \$ 100 \cdot(1.075)^{4} \approx \$ 133.55$.
(d) Suppose instead that interest is compounded daily and that at a particular day the balance is y dollars. What is the balance the next day?
Solution: $\quad y(t+1)=y(t)+\frac{30 \%}{365} y(t)$
(2) Suppose interest is compounded continuously and that at a particular time y the balance is $y(t)$ dollars, where t is measured in years.
(a) What is the approximate interest rate for the period between times $t, t+h$ if h is very small? Solution: $30 \% \cdot h$.
(b) What is the balance at time $t+h$?

Solution: $\quad y(t+h) \approx y(t)+30 \% \cdot h \cdot y(t)$.

- Rearranging and taking the limit $t \rightarrow 0$ we obtain the ODE $y^{\prime}(t)=30 \% y(t)$. In general if the interest rate is r we discover that $y(t)=y(0) e^{r t}$.

2. Further examples

From now on let the interest rate by r.
(3) Suppose that in addition to the interest we also have a constant income stream of b dollars per month.
(a) What differential equation expresses our bank balance now?

Solution: $\quad y^{\prime}=r y+b$.
(b) What is the general solution (hint: use an ansatz of the form $C e^{r t}+B$). What is the solution that has $y(0)=y_{0}$?
Solution: If $y=A e^{r t}+B$ then $y^{\prime}=r A e^{r t}$. Thus our ansatz will satisfy the equation iff

$$
r A e^{r t}=r\left(A e^{r t}+B\right)+b
$$

or equivalently if

$$
r A e^{r t}=r A e^{r t}+(r B+b)
$$

that is if $r B+b=0$. The general solution is thus $y(t)=A e^{r t}-\frac{b}{r}$. In particular $y(0)=A-\frac{b}{r}$ so $A=y_{0}+\frac{b}{r}$ and the solution is

$$
y(t)=\left(y_{0}+\frac{b}{r}\right) e^{r t}-\frac{b}{r}
$$

(4) Suppose instead that our income stream is seasonal, so that the differential equation is $y^{\prime}=r y+$ $b \sin (2 \pi t)$. Find the general solution and the solution satisfying $y(0)=y_{0}$ using an Ansatz of the form $A e^{r t}+B \sin (2 \pi t)+C \cos (2 \pi t)$.

Solution: If $y=A e^{r t}+B \sin (2 \pi t)+C \cos (2 \pi t)$ then $y^{\prime}=r A e^{r t}+2 \pi B \cos (2 \pi t)-C \sin (2 \pi t)$. Thus our ansatz will satisfy the equation iff

$$
r A e^{r t}+2 \pi B \cos (2 \pi t)-C \sin (2 \pi t)=r\left(A e^{r t}+B \sin (2 \pi t)+C \cos (2 \pi t)\right)+b \sin (2 \pi t)
$$

that is iff

$$
r A e^{r t}+2 \pi B \cos (2 \pi t)-C \sin (2 \pi t)=r A e^{r t}+(r B+b) \sin (2 \pi t)+r C \cos (2 \pi t),
$$

that is if

$$
2 \pi B \cos (2 \pi t)-C \sin (2 \pi t)=(r B+b) \sin (2 \pi t)+r C \cos (2 \pi t)
$$

For this to be true we need $2 \pi B=r C$ and $r B+b=-C$. Multiplying the second equation by r we get $r^{2} B+b r=-2 \pi B$ so $B=-\frac{b r}{r^{2}+2 \pi}$ and $C=\frac{2 \pi b}{r^{2}+2 \pi}$ - that is

$$
y=A e^{r t}-\frac{b r}{r^{2}+2 \pi} \sin (2 \pi t)-\frac{2 \pi b}{r^{2}+2 \pi} \cos (2 \pi t) .
$$

Since $y(0)=A-\frac{2 \pi b}{r^{2}+2 \pi}$ we see that $A=y_{0}+\frac{2 \pi b}{r^{2}+2 \pi}$ so the solution is

$$
y(t)=\left(y_{0}+\frac{2 \pi b}{r^{2}+2 \pi}\right) e^{r t}-\frac{b r}{r^{2}+2 \pi} \sin (2 \pi t)-\frac{2 \pi b}{r^{2}+2 \pi} \cos (2 \pi t) .
$$

(5) (For numerical discussion) Suppose instead the interest rate is seasonal, so the equation is $y^{\prime}=$ $(r+a \cos (2 \pi t)) y$. Can you find a solution? What if $y^{\prime}=(r+a \sin (2 \pi t)) y+b$?

Solution: The first equation can be solved by rewriting it as $\frac{y^{\prime}}{y}=r+a \cos (2 \pi t)$ and noting that $\frac{y^{\prime}}{y}=(\log y)^{\prime}$. Since $r t+\frac{a}{2 \pi} \sin (2 \pi t)+C$ has the required derivative we see that

$$
\log y=r t+\frac{a}{2 \pi} \sin (2 \pi t)+C
$$

so

$$
y=e^{r t+\frac{a}{2 \pi} \sin (2 \pi t)+C}=e^{C} e^{r t+\frac{a}{2 \pi} \sin (2 \pi t)} .
$$

Noting that $y(t)=e^{C}$ we see that the solution is

$$
y=y_{0} \cdot e^{r t+\frac{a}{2 \pi} \sin (2 \pi t)} .
$$

Finding a closed-form solution for the second equation would be more challenging.

