Math 100C - WORKSHEET 8 DIFFERENTIAL EQUATIONS

1. Manipulating Taylor expansions

Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

In addition we have the following expansions about $x=0$:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots ; \quad \quad \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

(1) (Final, 2016) Use a 3rd order Taylor approximation to estimate $\sin 0.01$. Then find the 3rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.
(2) Find the 3rd order Taylor expansion of $\sqrt{x}-\frac{1}{4} x$ about $x=4$.
(3) Expand $\frac{e^{x^{2}}}{1+x}$ to second order about $x=1$.
(4) Find the 8 th order expansion of $f(x)=e^{x^{2}}-\frac{1}{1+x^{3}}$. What is $f^{(6)}(0)$?
(5) Show that $\log \frac{1+x}{1-x} \approx 2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

2. Differential equations

(6) For each equation: Is $y=3$ a solution? Is $y=2$ a solution? What are all the solutions?

$$
y^{2}=4 \quad ; \quad y^{2}=3 y
$$

(7) For each equation: Is $y(x)=x^{2}$ a solution? Is $y(x)=e^{x}$ a solution?

$$
\frac{d y}{d x}=y \quad ; \quad\left(\frac{d y}{d x}\right)^{2}=4 y
$$

(8) Which of the following (if any) is a solution of $\frac{d z}{d t}+t^{2}-1=z$ (challenge: find more solutions):
A. $z(t)=t^{2}$;
B. $z(t)=t^{2}+2 t+1$
(9) The balance of a bank account satisfies the differential equation $\frac{d y}{d t}=1.04 y$ (this represents interest of 4% compounded continuously). Sketch the solutions to the differential equation. What is the solution for which $y(0)=\$ 100$?
(10) Suppose $\frac{d y}{d x}=a y, \frac{d z}{d x}=b z$. Can you find a differential equation satisfied by $w=\frac{y}{z}$? Hint: calculate $\frac{d w}{d x}$.

3. Solutions by massaging and ansatze

(11) For which value of the constant ω is $y(t)=\sin (\omega t)$ a solution of the oscillation equation $\frac{d^{2} y}{d t^{2}}+4 y=0$?
(12) (The quantum harmonic oscillator) For which value of the constants A, B (with $B>0$) does the function $f(x)=A x e^{-B x^{2}}$ satisfy $-f^{\prime \prime}+x^{2} f=3 f$? What if we also insist that $f(1)=1$?
(13) Consider the equation $\frac{d y}{d t}=a(y-b)$.
(a) Define a new function $u(t)=y(t)-b$. What is the differential equation satisfied by $u v$?
(b) What is the general solution for $u(t)$?
(c) What is the general solution for $y(t)$?
(d) Suppose $a<0$. What is the asymptotic behaviour of the solution as $t \rightarrow \infty$?
(e) Suppose we are given the initial value $y(0)$. What is C ? What is the formula for $y(t)$ using this?

