Math 100C - SOLUTIONS TO WORKSHEET 8 DIFFERENTIAL EQUATIONS

1. MANIPULATING TAYLOR EXPANSIONS

Let
$$c_k = \frac{f^{(k)}(a)}{k!}$$
. The *n*th order Taylor expansion of $f(x)$ about $x = a$ is the polynomial
$$T_n(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n$$
In a ddition we have the following expansion of even $x = 0$.

In addition we have the following expansions about x = 0:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots;$$
 $\frac{1}{1-x} = 1 + x + x^{2} + x^{3} + \dots$

(1) (Final, 2016) Use a 3rd order Taylor approximation to estimate $\sin 0.01$. Then find the 3rd order Taylor expansion of $(x+1)\sin x$ about x=0.

Solution: Let $f(x) = \sin x$. Then $f'(x) = \cos x$, $f^{(2)}(x) = -\sin x$ and $f^{(3)}(x) = -\cos x$. Thus f(0) = 0, f'(0) = 1, f''(0) = 0, $f^{(3)}(0) = -1$ and the third-order expansion of $\sin x$ is $0 + \frac{1}{1!}x + \frac{0}{2!}x^2 + \frac{(-1)}{3!}x^3 = x - \frac{1}{6}x^3$. In particular $\sin 0.01 \approx 0.01 - \frac{1}{6 \cdot 10^6}$. We then also have, correct to third order, that

$$(x+1)\sin x \approx (x+1)\left(x-\frac{1}{6}x^3\right) = x+x^2-\frac{1}{6}x^3-\frac{1}{6}x^4 \approx x+x^2-\frac{1}{6}x^3$$

(2) Find the 3rd order Taylor expansion of $\sqrt{x} - \frac{1}{4}x$ about x = 4. **Solution:** Let $f(x) = \sqrt{x}$. Then $f'(x) = \frac{1}{2\sqrt{x}}$, $f^{(2)}(x) = -\frac{1}{4x^{3/2}}$ and $f^{(3)}(x) = \frac{3}{8}x^{-5/2}$. Thus f(4) = 2, $f'(4) = \frac{1}{4}$, $f^{(2)}(4) = -\frac{1}{32}$, $f^{(3)}(4) = \frac{3}{256}$ and the third-order expansions are

$$\sqrt{x} \approx 2 + \frac{1}{4}(x-4) - \frac{1}{32 \cdot 2!}(x-4)^3 + \frac{3}{256 \cdot 3!}(x-4)^3$$
$$\frac{1}{4}x \approx 1 + \frac{1}{4}(x-4)$$

so that

$$\sqrt{x} - \frac{1}{4}x \approx 1 - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3.$$

(3) Expand $\frac{e^{x^2}}{1+x}$ to second order about x = 1.

Solution: Let x = 1 + h so that we are thinking of h as a small variable. We then have $\frac{e^{x^2}}{1+x} =$ $\frac{e^{1+2h+h^2}}{2+h} = \frac{e}{2} \cdot \frac{e^{2h+h^2}}{1+\frac{h}{2}} \text{ where } 2h+h^2 \text{ and } \frac{h}{2} \text{ are small. Now to second order we have } e^u \approx 1+u+\frac{u^2}{2} \text{ and } \frac{1}{1-v} \approx 1+v+v^2. \text{ Plugging in } u=2h+h^2 \text{ and } v=-\frac{h}{2} \text{ we get}$

$$e^{2h+h^2} \approx 1 + (2h+h^2) + \frac{1}{2} (2h+h^2)^2$$

= 1 + 2h + h^2 + $\frac{1}{2} (4h^2 + 4h^3 + h^4)$
 $\approx 1 + 2h + 3h^2$

and

$$\frac{1}{1+\frac{h}{2}} \approx 1 + \left(-\frac{h}{2}\right) + \left(-\frac{h}{2}\right)^2 = z1 - \frac{1}{2}h + \frac{1}{4}h^2,$$

Date: 3/11/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

correct to second order. We thus have

$$\begin{split} \frac{e^{2h+h^2}}{1+\frac{h}{2}} &\approx \left(1+2h+3h^2\right) \left(1-\frac{1}{2}h+\frac{1}{4}h^2\right) \\ &= 1+\left(1\cdot(-\frac{1}{2})+2\cdot1\right)h+\left(1\cdot\frac{1}{4}+2\cdot(-\frac{1}{2})+3\cdot1\right)h^2 + \text{higher order} \\ &\approx 1+\frac{3}{2}h+\frac{9}{4}h^2 \end{split}$$

and (recalling that h = x - 1)

$$\frac{e^{x^2}}{1+x} = \frac{e}{2} \cdot \frac{e^{2h+h^2}}{1+\frac{h}{2}}$$
$$\approx \frac{e}{2} \left(1 + \frac{3}{2}h + \frac{9}{4}h^2 \right)$$
$$= \frac{3}{2} + \frac{3e}{4}(x-1) + \frac{9e}{8}(x-1)^2 + \frac{9e}{8}(x-$$

(4) Find the 8th order expansion of $f(x) = e^{x^2} - \frac{1}{1+x^3}$. What is $f^{(6)}(0)$?

Solution: To fourth order we have $e^u \approx 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + \frac{u^4}{124} + \frac{u^5}{120}$ so $e^{x^2} \approx 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{6} + \frac{x^8}{24}$ to 8th order. We also know that $\frac{1}{1-u} \approx 1 + u + u^2 + u^3$ so $\frac{1}{1+x^3} \approx 1 - x^3 + x^6$ correct to 8th order. We conclude that

$$e^{x^2} + \cos(2x) \approx \left(1 + x^2 + \frac{x^4}{2} + \frac{x^6}{6} + \frac{x^8}{24}\right) - \left(1 - x^3 + x^6\right)$$
$$\approx x^2 - x^3 + \frac{1}{2}x^4 - \frac{5}{6}x^6 + \frac{1}{24}x^8.$$

In particular, $\frac{f^{(6)}(0)}{6!} = -\frac{5}{6}$ so $f^{(6)}(0) = -720 \cdot \frac{5}{6} = -600$. (5) Show that $\log \frac{1+x}{1-x} \approx 2(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

Choice of x. Solution: Let $f(x) = \log(1+x)$. Then $f'(x) = \frac{1}{1+x}$, $f^{(2)}(x) = -\frac{1}{(1+x)^2}$, $f^{(3)}(x) = \frac{1\cdot 2}{(1+x)^3}$, $f^{(4)}(x) = -\frac{1\cdot 2\cdot 3}{(1+x)^4}$ and so on, so $f^{(k)}(x) = (-1)^{k-1} \cdot \frac{(k-1)!}{(1+x)^k}$. We thus have that f(0) = 0 and for $k \ge 1$ that $f^{(k)}(0) = (-1)^{k-1}(k-1)!$. Then $\frac{f^{(k)}(0)}{k!} = \frac{(-1)^{k-1}}{k}$ so

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

Plugging -x we get:

$$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} \cdots$$

 \mathbf{SO}

$$\log \frac{1+x}{1-x} = \log(1+x) - \log(1-x) = 2x + 2\frac{x^3}{3} + 2\frac{x^5}{5} + \cdots$$

In particular

$$\log 3 = \log \frac{1 + \frac{1}{2}}{1 - \frac{1}{2}} = 2\left(\frac{1}{2} + \frac{1}{24} + \frac{1}{160} + \cdots\right) = 1 + \frac{1}{12} + \frac{1}{80} + \cdots \approx 1.096$$

2. Differential equations

(6) For each equation: Is y = 3 a solution? Is y = 2 a solution? What are all the solutions?

$$y^2 = 4$$
 ; $y^2 = 3y$

Solution: Plugging in 2 we have $2^2 = 4$ in the first equation but $2^2 \neq 3 \cdot 2$. Plugging in 3 we have $3^2 \neq 4$ but $3^2 = 3 \cdot 3$. The solutions to the first equations are $\{\pm 2\}$, to the second $\{0,3\}$.

(7) For each equation: Is $y(x) = x^2$ a solution? Is $y(x) = e^x$ a solution?

$$\frac{dy}{dx} = y$$
 ; $\left(\frac{dy}{dx}\right)^2 = 4y$

Solution: Plugging in $y = x^2$ into the equations we have $2x \neq x^2$ but $(2x)^2 = 2 \cdot x^2$ is true. Plugging in e^x into the equations we see $e^x = e^x$ but $(e^x)^2 = e^{2x} \neq 4e^x$. (8) Which of the following (if any) is a solution of $\frac{dz}{dt} + t^2 - 1 = z$ (challenge: find more solutions):

A.
$$z(t) = t^2$$
; B. $z(t) = t^2 + 2t + 1$

Solution: $2t + t^2 - 1 \neq t^2$ but $(2t+2) + t^2 - 1 = t^2 + 2t + 1$ so only B is a solution. If w is another solution them we have

$$\frac{dw}{dt} + t^2 - 1 = w$$
$$\frac{dz}{dt} + t^2 - 1 = z$$

and subtracting the two equations we get $\frac{d(w-z)}{dt} = w - z$ so $w - z = Ce^t$ and $w(t) = Ce^t + t^2 + 2t + 1$ for any constant t.

- (9) The balance of a bank account satisfies the differential equation $\frac{dy}{dt} = 1.04y$ (this represents interest of 4% compounded continuously). Sketch the solutions to the differential equation. What is the solution for which y(0) = \$100?
 - **Solution:** The solutions are $Ce^{1.04t}$ for arbitrary C. The particular solution is $100e^{1.04t}$ dollars.
- (10) Suppose $\frac{dy}{dx} = ay$, $\frac{dz}{dx} = bz$. Can you find a differential equation satisfied by $w = \frac{y}{z}$? Hint: calculate

Solution: $w' = \left(\frac{y}{z}\right)' = \frac{y'z - yz'}{z^2} = \frac{ayz - ybz}{z^2} = (a-b)\frac{y}{z} = (a-b)w$ so the equation is $\frac{dw}{dx} = (a-b)w$.

3. Solutions by massaging and ansatze

(11) For which value of the constant ω is $y(t) = \sin(\omega t)$ a solution of the oscillation equation $\frac{d^2y}{dt^2} + 4y = 0$? **Solution:** $(\sin(\omega t))' = \omega \cos \omega t$ so $(\sin(\omega t))'' = -\omega^2 \sin(\omega t)$ so

$$(\sin(\omega t))'' = -4(\sin(\omega t))$$

iff $\omega^2 = 4$, that is iff $\omega = \pm 2$.

(12) (The quantum harmonic oscillator) For which value of the constants A, B (with B > 0) does the function $f(x) = Axe^{-Bx^2}$ satisfy $-f'' + x^2f = 3f$? What if we also insist that f(1) = 1? Solution: $f' = Ae^{-Bx^2} - 2ABx^2e^{-Bx^2}$ so $f'' = -6ABxe^{-Bx^2} + 4AB^2x^3e^{-Bx^2}$ and

$$-f'' + x^{2}f = 6ABxe^{-Bx^{2}} + \left(Ax^{3}e^{-Bx^{2}} - 4AB^{2}x^{3}e^{-Bx^{2}}\right)$$
$$= 6ABxe^{-Bx^{2}} + A\left(1 - 4B^{2}\right)x^{3}e^{-Bx^{2}}$$

 \mathbf{SO}

$$-f'' + x^2 f = (6B + (1 - 4B^2)x^2) Axe^{-Bx^2}$$

and we get a solution to our equation only if $1 - 4B^2 = 0$ that is if $B = \frac{1}{2}$ (and then 6B = 3 as desired). Finally the solution has f'(1) = 1 if $Ae^{-1/2} = 1$ so $A = e^{1/2}$ and $f(x) = xe^{-\frac{1}{2}(x^2-1)}$.

- (13) Consider the equation dy/dt = a(y b).
 (a) Define a new function u(t) = y(t) b. What is the differential equation satisfied by uv? **Solution:** u' = y' = a(y - b)' = au.
 - (b) What is the general solution for u(t)? **Solution:** $u(t) = Ce^{at}$ where C = u(0).
 - (c) What is the general solution for y(t)? Solution: $y(t) = u(t) + b = Ce^{at} + b$.
 - (d) Suppose a < 0. What is the asymptotic behaviour of the solution as $t \to \infty$? **Solution:** $y(t) \xrightarrow[x \to \infty]{} b$ and the convergence is exponential: y(t) - b decays exponentially.

(e) Suppose we are given the *initial value* y(0). What is C? What is the formula for y(t) using this?

Solution: We have $Ce^{a \cdot 0} + b = y(0)$ so C = y(0) - b and $y(t) = (y(0) - b)e^{at} + b$.