Math 100C - SOLUTIONS TO WORKSHEET 8 DIFFERENTIAL EQUATIONS

1. Manipulating Taylor expansions

Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

In addition we have the following expansions about $x=0$:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots ; \quad \quad \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

(1) (Final, 2016) Use a 3rd order Taylor approximation to estimate $\sin 0.01$. Then find the 3rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.

Solution: Let $f(x)=\sin x$. Then $f^{\prime}(x)=\cos x, f^{(2)}(x)=-\sin x$ and $f^{(3)}(x)=-\cos x$. Thus $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f^{(3)}(0)=-1$ and the third-order expansion of $\sin x$ is $0+\frac{1}{1!} x+\frac{0}{2!} x^{2}+\frac{(-1)}{3!} x^{3}=x-\frac{1}{6} x^{3}$. In particular $\sin 0.01 \approx 0.01-\frac{1}{6 \cdot 10^{6}}$. We then also have, correct to third order, that

$$
(x+1) \sin x \approx(x+1)\left(x-\frac{1}{6} x^{3}\right)=x+x^{2}-\frac{1}{6} x^{3}-\frac{1}{6} x^{4} \approx x+x^{2}-\frac{1}{6} x^{3}
$$

(2) Find the 3 rd order Taylor expansion of $\sqrt{x}-\frac{1}{4} x$ about $x=4$.

Solution: Let $f(x)=\sqrt{x}$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, f^{(2)}(x)=-\frac{1}{4 x^{3 / 2}}$ and $f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}$. Thus $f(4)=2, f^{\prime}(4)=\frac{1}{4}, f^{(2)}(4)=-\frac{1}{32}, f^{(3)}(4)=\frac{3}{256}$ and the third-order expansions are

$$
\begin{aligned}
& \sqrt{x} \approx 2+\frac{1}{4}(x-4)-\frac{1}{32 \cdot 2!}(x-4)^{3}+\frac{3}{256 \cdot 3!}(x-4)^{3} \\
& \frac{1}{4} x \approx 1+\frac{1}{4}(x-4)
\end{aligned}
$$

so that

$$
\sqrt{x}-\frac{1}{4} x \approx 1-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}
$$

(3) Expand $\frac{e^{x^{2}}}{1+x}$ to second order about $x=1$.

Solution: Let $x=1+h$ so that we are thinking of h as a small variable. We then have $\frac{e^{x^{2}}}{1+x}=$ $\frac{e^{1+2 h+h^{2}}}{2+h}=\frac{e}{2} \cdot \frac{e^{2 h+h^{2}}}{1+\frac{h}{2}}$ where $2 h+h^{2}$ and $\frac{h}{2}$ are small. Now to second order we have $e^{u} \approx 1+u+\frac{u^{2}}{2}$ and $\frac{1}{1-v} \approx 1+v+v^{2}$. Plugging in $u=2 h+h^{2}$ and $v=-\frac{h}{2}$ we get

$$
\begin{aligned}
e^{2 h+h^{2}} & \approx 1+\left(2 h+h^{2}\right)+\frac{1}{2}\left(2 h+h^{2}\right)^{2} \\
& =1+2 h+h^{2}+\frac{1}{2}\left(4 h^{2}+4 h^{3}+h^{4}\right) \\
& \approx 1+2 h+3 h^{2}
\end{aligned}
$$

and

$$
\frac{1}{1+\frac{h}{2}} \approx 1+\left(-\frac{h}{2}\right)+\left(-\frac{h}{2}\right)^{2}=z 1-\frac{1}{2} h+\frac{1}{4} h^{2}
$$

correct to second order. We thus have

$$
\begin{aligned}
\frac{e^{2 h+h^{2}}}{1+\frac{h}{2}} & \approx\left(1+2 h+3 h^{2}\right)\left(1-\frac{1}{2} h+\frac{1}{4} h^{2}\right) \\
& =1+\left(1 \cdot\left(-\frac{1}{2}\right)+2 \cdot 1\right) h+\left(1 \cdot \frac{1}{4}+2 \cdot\left(-\frac{1}{2}\right)+3 \cdot 1\right) h^{2}+\text { higher order } \\
& \approx 1+\frac{3}{2} h+\frac{9}{4} h^{2}
\end{aligned}
$$

and (recalling that $h=x-1$)

$$
\begin{aligned}
\frac{e^{x^{2}}}{1+x} & =\frac{e}{2} \cdot \frac{e^{2 h+h^{2}}}{1+\frac{h}{2}} \\
& \approx \frac{e}{2}\left(1+\frac{3}{2} h+\frac{9}{4} h^{2}\right) \\
& =\frac{3}{2}+\frac{3 e}{4}(x-1)+\frac{9 e}{8}(x-1)^{2}
\end{aligned}
$$

(4) Find the 8 th order expansion of $f(x)=e^{x^{2}}-\frac{1}{1+x^{3}}$. What is $f^{(6)}(0)$?

Solution: To fourth order we have $e^{u} \approx 1+u+\frac{u^{2}}{2}+\frac{u^{3}}{6}+\frac{u^{4}}{24}+\frac{u^{5}}{120}$ so $e^{x^{2}} \approx 1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}$ to 8 th order. We also know that $\frac{1}{1-u} \approx 1+u+u^{2}+u^{3}$ so $\frac{1}{1+x^{3}} \approx 1-x^{3}+x^{6}$ correct to 8 th order. We conclude that

$$
\begin{aligned}
e^{x^{2}}+\cos (2 x) & \approx\left(1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}\right)-\left(1-x^{3}+x^{6}\right) \\
& \approx x^{2}-x^{3}+\frac{1}{2} x^{4}-\frac{5}{6} x^{6}+\frac{1}{24} x^{8}
\end{aligned}
$$

In particular, $\frac{f^{(6)}(0)}{6!}=-\frac{5}{6}$ so $f^{(6)}(0)=-720 \cdot \frac{5}{6}=-600$.
(5) Show that $\log \frac{1+x}{1-x} \approx 2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

Solution: Let $f(x)=\log (1+x)$. Then $f^{\prime}(x)=\frac{1}{1+x}, f^{(2)}(x)=-\frac{1}{(1+x)^{2}}, f^{(3)}(x)=\frac{1 \cdot 2}{(1+x)^{3}}$, $f^{(4)}(x)=-\frac{1 \cdot 2 \cdot 3}{(1+x)^{4}}$ and so on, so $f^{(k)}(x)=(-1)^{k-1} \cdot \frac{(k-1)!}{(1+x)^{k}}$. We thus have that $f(0)=0$ and for $k \geq 1$ that $f^{(k)}(0)=(-1)^{k-1}(k-1)!$. Then $\frac{f^{(k)}(0)}{k!}=\frac{(-1)^{k-1}}{k}$ so

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

Plugging $-x$ we get:

$$
\log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4} \cdots
$$

so

$$
\log \frac{1+x}{1-x}=\log (1+x)-\log (1-x)=2 x+2 \frac{x^{3}}{3}+2 \frac{x^{5}}{5}+\cdots
$$

In particular

$$
\log 3=\log \frac{1+\frac{1}{2}}{1-\frac{1}{2}}=2\left(\frac{1}{2}+\frac{1}{24}+\frac{1}{160}+\cdots\right)=1+\frac{1}{12}+\frac{1}{80}+\cdots \approx 1.096
$$

2. Differential equations

(6) For each equation: Is $y=3$ a solution? Is $y=2$ a solution? What are all the solutions?

$$
y^{2}=4 \quad ; \quad y^{2}=3 y
$$

Solution: Plugging in 2 we have $2^{2}=4$ in the first equation but $2^{2} \neq 3 \cdot 2$. Plugging in 3 we have $3^{2} \neq 4$ but $3^{2}=3 \cdot 3$. The solutions to the first equations are $\{ \pm 2\}$, to the second $\{0,3\}$.
(7) For each equation: Is $y(x)=x^{2}$ a solution? Is $y(x)=e^{x}$ a solution?

$$
\frac{d y}{d x}=y \quad ; \quad\left(\frac{d y}{d x}\right)^{2}=4 y
$$

Solution: Plugging in $y=x^{2}$ into the equations we have $2 x \neq x^{2}$ but $(2 x)^{2}=2 \cdot x^{2}$ is true. Plugging in e^{x} into the equations we see $e^{x}=e^{x}$ but $\left(e^{x}\right)^{2}=e^{2 x} \neq 4 e^{x}$.
(8) Which of the following (if any) is a solution of $\frac{d z}{d t}+t^{2}-1=z$ (challenge: find more solutions):

$$
\begin{array}{ll}
\text { A. } z(t)=t^{2} ; & \text { B. } z(t)=t^{2}+2 t+1
\end{array}
$$

Solution: $\quad 2 t+t^{2}-1 \neq t^{2}$ but $(2 t+2)+t^{2}-1=t^{2}+2 t+1$ so only B is a solution. If w is another solution them we have

$$
\begin{aligned}
& \frac{d w}{d t}+t^{2}-1=w \\
& \frac{d z}{d t}+t^{2}-1=z
\end{aligned}
$$

and subtracting the two equations we get $\frac{d(w-z)}{d t}=w-z$ so $w-z=C e^{t}$ and $w(t)=C e^{t}+t^{2}+2 t+1$ for any constant t.
(9) The balance of a bank account satisfies the differential equation $\frac{d y}{d t}=1.04 y$ (this represents interest of 4% compounded continuously). Sketch the solutions to the differential equation. What is the solution for which $y(0)=\$ 100$?

Solution: The solutions are $C e^{1.04 t}$ for arbitrary C. The particular solution is $100 e^{1.04 t}$ dollars.
(10) Suppose $\frac{d y}{d x}=a y, \frac{d z}{d x}=b z$. Can you find a differential equation satisfied by $w=\frac{y}{z}$? Hint: calculate $\frac{d w}{d x}$.

Solution: $\quad w^{\prime}=\left(\frac{y}{z}\right)^{\prime}=\frac{y^{\prime} z-y z^{\prime}}{z^{2}}=\frac{a y z-y b z}{z^{2}}=(a-b) \frac{y}{z}=(a-b) w$ so the equation is $\frac{d w}{d x}=(a-b) w$.

3. Solutions by massaging and ansatze

(11) For which value of the constant ω is $y(t)=\sin (\omega t)$ a solution of the oscillation equation $\frac{d^{2} y}{d t^{2}}+4 y=0$?

Solution: $\quad(\sin (\omega t))^{\prime}=\omega \cos \omega t$ so $(\sin (\omega t))^{\prime \prime}=-\omega^{2} \sin (\omega t)$ so

$$
(\sin (\omega t))^{\prime \prime}=-4(\sin (\omega t))
$$

iff $\omega^{2}=4$, that is iff $\omega= \pm 2$.
(12) (The quantum harmonic oscillator) For which value of the constants A, B (with $B>0$) does the function $f(x)=A x e^{-B x^{2}}$ satisfy $-f^{\prime \prime}+x^{2} f=3 f$? What if we also insist that $f(1)=1$?

Solution: $\quad f^{\prime}=A e^{-B x^{2}}-2 A B x^{2} e^{-B x^{2}}$ so $f^{\prime \prime}=-6 A B x e^{-B x^{2}}+4 A B^{2} x^{3} e^{-B x^{2}}$ and

$$
\begin{aligned}
-f^{\prime \prime}+x^{2} f & =6 A B x e^{-B x^{2}}+\left(A x^{3} e^{-B x^{2}}-4 A B^{2} x^{3} e^{-B x^{2}}\right) \\
& =6 A B x e^{-B x^{2}}+A\left(1-4 B^{2}\right) x^{3} e^{-B x^{2}}
\end{aligned}
$$

so

$$
-f^{\prime \prime}+x^{2} f=\left(6 B+\left(1-4 B^{2}\right) x^{2}\right) A x e^{-B x^{2}}
$$

and we get a solution to our equation only if $1-4 B^{2}=0$ that is if $B=\frac{1}{2}$ (and then $6 B=3$ as desired). Finally the solution has $f^{\prime}(1)=1$ if $A e^{-1 / 2}=1$ so $A=e^{1 / 2}$ and $f(x)=x e^{-\frac{1}{2}\left(x^{2}-1\right)}$.
(13) Consider the equation $\frac{d y}{d t}=a(y-b)$.
(a) Define a new function $u(t)=y(t)-b$. What is the differential equation satisfied by $u v$?

Solution: $\quad u^{\prime}=y^{\prime}=a(y-b)^{\prime}=a u$.
(b) What is the general solution for $u(t)$?

Solution: $u(t)=C e^{a t}$ where $C=u(0)$.
(c) What is the general solution for $y(t)$?

Solution: $y(t)=u(t)+b=C e^{a t}+b$.
(d) Suppose $a<0$. What is the asymptotic behaviour of the solution as $t \rightarrow \infty$?

Solution: $y(t) \xrightarrow[x \rightarrow \infty]{ } b$ and the convergence is exponential: $y(t)-b$ decays exponentially.
(e) Suppose we are given the initial value $y(0)$. What is C ? What is the formula for $y(t)$ using this?
Solution: We have $C e^{a \cdot 0}+b=y(0)$ so $C=y(0)-b$ and $y(t)=(y(0)-b) e^{a t}+b$.

