Math 100C – WORKSHEET 6 CURVE SKETCHING; TAYLOR EXPANSION

1. Curve sketching

Let $f(x) = \frac{x^3+2}{x^2+1}$; and that $f''(x) = -2\frac{x^3-6x^2-3x+2}{(x^2+1)^3}$ (1) Zeroeth derivative questions

(a) Where is f defined?

- (b) List the vertical asymptotes of f, if any?
- (c) What are the asymptotic behaviours of f at $\pm \infty$?
- (d) Where does f meet the axes?
- (2) It is a fact that $f'(x) = \frac{x(x-1)(x^2+x+4)}{(x^2+1)^2}$ (in an exam you might be asked to differentiate the function yourself)enumerate
- (3) Where is f differentiable?
- (4) Where does f'(x) = 0? Where it is positive? Negative?
- (5) Where are the local extrema of f? What are the values at those points?

It is a fact that $f''(x) = -2\frac{x^3-6x^2-3x+2}{(x^2+1)^3}$.

- (1) Where is f'' positive/negative? Where does it vanish? Say as much as you can.
- (2) Where is f concave up/down? Where are its inflection points?

Date: 20/10/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

Draw a sketch of the graph of f, incorporating all the features you have identified in questions 1-3.

• Extra credit: Find the constant b so that $f(x) \approx x + b$ as $x \to \infty$ (in the sense that $f(x) - x - b \to 0$). We call this line a *slant asymptote* for f.

2. TAYLOR EXPANSION

- (5) (Review) Use linear approximations to estimate:
 - (a) $\log \frac{4}{3}$ and $\log \frac{2}{3}$. Combine the two for an estimate of $\log 2$.
 - (b) $\sin 0.1$ and $\cos 0.1$.

(6) Let $f(x) = e^x$

- (a) Find $f(0), f'(0), f^{(2)}(0), \cdots$
- (b) Find a polynomial $T_0(x)$ such that $T_0(0) = f(0)$.
- (c) Find a polynomial $T_1(x)$ such that $T_1(0) = f(0)$ and $T'_1(0) = f'(0)$.
- (d) Find a polynomial $T_2(x)$ such that $T_2(0) = f(0), T'_2(0) = f'(0)$ and $T_2^{(2)}(0) = f^{(2)}(0)$. (e) Find a polynomial $T_3(x)$ such that $T_3^{(k)}(0) = f^{(k)}(0)$ for $0 \le k \le 3$.

(7) Do the same with $f(x) = \log x$ about x = 1.

Let $c_k = \frac{f^{(k)}(a)}{k!}$. The *n*th order Taylor expansion of f(x) about x = a is the polynomial $T_n(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n$

(8) Find the 4th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about x = 0)

(9) Find the *n*th order expansion of $\cos x$, and approximate $\cos 0.1$ using a 3rd order expansion

(10) (Final, 2015) Let $T_3(x) = 24 + 6(x-3) + 12(x-3)^2 + 4(x-3)^3$ be the third-degree Taylor polynomial of some function f, expanded about a = 3. What is f''(3)?

(11) In labour economics, the *CES production function* is the functional form $Q(K, E) = \left[\alpha K^{\delta} + (1 - \alpha) E^{\delta}\right]^{1/\delta}$. Here K is capital, E is employment, and $\delta < 1$ measures the degree of substitution between labour and capital. Find the linear and quadratic expansions of Q in the variable E about the point $(K_0, E_0) = \left(\frac{1}{2}, \frac{1}{2}\right)$ if $\alpha = \frac{1}{2}$.

3. New expansions from old

(12) (Final, 2016) Use a 3rd order Taylor approximation to estimate $\sin 0.01$. Then find the 3rd order Taylor expansion of $(x + 1) \sin x$ about x = 0.

(13) Find the 3rd order Taylor expansion of $\sqrt{x} - \frac{1}{4}x$ about x = 4.

(14) Find the 8th order expansion of $f(x) = e^{x^2} - \frac{1}{1+x^3}$. What is $f^{(6)}(0)$?

(15) Show that $\log \frac{1+x}{1-x} \approx 2(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.