Math 100C - WORKSHEET 6 CURVE SKETCHING; TAYLOR EXPANSION

1. Curve sketching

Let $f(x)=\frac{x^{3}+2}{x^{2}+1}$; and that $f^{\prime \prime}(x)=-2 \frac{x^{3}-6 x^{2}-3 x+2}{\left(x^{2}+1\right)^{3}}$
(1) Zeroeth derivative questions
(a) Where is f defined?
(b) List the vertical asymptotes of f, if any?
(c) What are the asymptotic behaviours of f at $\pm \infty$?
(d) Where does f meet the axes?
(2) It is a fact that $f^{\prime}(x)=\frac{x(x-1)\left(x^{2}+x+4\right)}{\left(x^{2}+1\right)^{2}}$ (in an exam you might be asked to differentiate the function yourself)enumerate
(3) Where is f differentiable?
(4) Where does $f^{\prime}(x)=0$? Where it is positive? Negative?
(5) Where are the local extrema of f ? What are the values at those points?

It is a fact that $f^{\prime \prime}(x)=-2 \frac{x^{3}-6 x^{2}-3 x+2}{\left(x^{2}+1\right)^{3}}$.
(1) Where is $f^{\prime \prime}$ positive/negative? Where does it vanish? Say as much as you can.
(2) Where is f concave up/down? Where are its inflection points?

Draw a sketch of the graph of f, incorporating all the features you have identified in questions 1-3.

- Extra credit: Find the constant b so that $f(x) \approx x+b$ as $x \rightarrow \infty$ (in the sense that $f(x)-x-b \rightarrow 0$). We call this line a slant asymptote for f.

2. TAYLOR EXPANSION

(5) (Review) Use linear approximations to estimate:
(a) $\log \frac{4}{3}$ and $\log \frac{2}{3}$. Combine the two for an estimate of $\log 2$.
(b) $\sin 0.1$ and $\cos 0.1$.
(6) Let $f(x)=e^{x}$
(a) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(b) Find a polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(c) Find a polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(d) Find a polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(e) Find a polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.
(7) Do the same with $f(x)=\log x$ about $x=1$.

Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial $T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}$
(8) Find the 4 th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about $x=0$)
(9) Find the nth order expansion of $\cos x$, and approximate $\cos 0.1$ using a 3 rd order expansion
(10) (Final, 2015) Let $T_{3}(x)=24+6(x-3)+12(x-3)^{2}+4(x-3)^{3}$ be the third-degree Taylor polynomial of some function f, expanded about $a=3$. What is $f^{\prime \prime}(3)$?
(11) In labour economics, the CES production function is the functional form $Q(K, E)=\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{1 / \delta}$. Here K is capital, E is employment, and $\delta<1$ measures the degree of substitution between labour and capital. Find the linear and quadratic expansions of Q in the variable E about the point $\left(K_{0}, E_{0}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$ if $\alpha=\frac{1}{2}$.

3. NEW EXPANSIONS FROM OLD

(12) (Final, 2016) Use a 3rd order Taylor approximation to estimate $\sin 0.01$. Then find the 3 rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.
(13) Find the 3rd order Taylor expansion of $\sqrt{x}-\frac{1}{4} x$ about $x=4$.
(14) Find the 8 th order expansion of $f(x)=e^{x^{2}}-\frac{1}{1+x^{3}}$. What is $f^{(6)}(0)$?
(15) Show that $\log \frac{1+x}{1-x} \approx 2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

