Math 100C - SOLUTIONS TO WORKSHEET 6 CURVE SKETCHING; TAYLOR EXPANSION

1. Curve sketching

Let $f(x)=\frac{x^{3}+2}{x^{2}+1}$; and that $f^{\prime \prime}(x)=-2 \frac{x^{3}-6 x^{2}-3 x+2}{\left(x^{2}+1\right)^{3}}$
(1) Zeroeth derivative questions
(a) Where is f defined?

Solution: f is defined on the entire axis since $x^{2}+1>0$ for all x.
(b) List the vertical asymptotes of f, if any?

Solution: No; f is defined by formula hence continuous everywhere and does not blow up.
(c) What are the asymptotic behaviours of f at $\pm \infty$?

Solution: When x is large (whether negative or positive) we have $x^{3}+2 \sim x^{3}$ and $x^{2}+1$ so $f(x) \sim \frac{x^{3}}{x^{2}}=x$ on both ends.
(d) Where does f meet the axes?

Solution: $\quad f(0)=2 ; f(x)=0$ iff $x^{3}=-2$ that is at $x=-\sqrt[3]{2}$.
(2) It is a fact that $f^{\prime}(x)=\frac{x(x-1)\left(x^{2}+x+4\right)}{\left(x^{2}+1\right)^{2}}$
(a) Where is f differentiable?

Solution: f^{\prime} is defined on the entire axis since $x^{2}+1>0$ for all x.
(b) Where does $f^{\prime}(x)=0$? Where it is positive? Negative?

Solution: Clearly $f^{\prime}(0)=f^{\prime}(1)=0$. Now $x^{2}+x+4=\left(x+\frac{1}{2}\right)^{2}+\frac{15}{4}$ is positive everywhere so the only zeroes of the derivative are 0,1 . The sign of the derivative is then the sign of $x(x-1)$ so the derivative is positive when $x<0$ or $x>1$ and negative when $0<x<1$.
(c) Where are the local extrema of f ? What are the values at those points?

Solution: $x=0$ is a local maximum, since f is increasing on its left and decreasing on its right. $x=1$ is a local minimum for the same reasons. $f(0)=2, f(1)=\frac{3}{2}$.
(3) It is a fact that $f^{\prime \prime}(x)=-2 \frac{x^{3}-6 x^{2}-3 x+2}{\left(x^{2}+1\right)^{3}}$.
(a) Where is $f^{\prime \prime}$ positive/negative? Where does it vanish? Say as much as you can.

Solution: The sign of $f^{\prime \prime}$ is the sign of $h(x)=-\left(x^{3}-6 x^{2}-3 x+2\right)$. Now $h(x) \sim-x^{3}$ at infinity, so h is positive for $x \ll 0$ and negative for $x \gg 0$. Next, $h(0)=-2<0$ and $h(1)=6>0$. Since $h(-1)=2>0$ we conclude that $f^{\prime \prime}$ is initially positive, crosses the axis somewhere on $(-1,0)$ to become negative, crossess the axis again on (0,1), and the crosses the axis a final time to become negative somewhere on $(1, \infty)$. Since h is cubic polynomial it has at most three roots, so those are the only sign changes of h hence of $f^{\prime \prime}$.
(b) Where is f concave up/down? Where are its inflection points?

Solution: By part (a) we conclude that f is initially concave down, has an inflection point somehwere on $(-1,0)$ after which it is concave up, has a second inflection point on $(0,1)$ after which it is concave down, and then has a third inflection point after which it is concave up.
(4) Draw a sketch of the graph of f, incorporating all the features you have identified in questions 1-3.

[^0]- Extra credit: Find the constant b so that $f(x) \approx x+b$ as $x \rightarrow \infty$ (in the sense that $f(x)-x-b \rightarrow 0$). We call this line a slant asymptote for f.

Solution: $\quad \frac{x^{3}+2}{x^{2}+1}-x=\frac{2-x}{x^{2}+1} \sim-\frac{1}{x} \rightarrow 0$ so $f(x) \approx x$ is actually correct.
Solution: We have $\frac{x^{3}+2}{x^{2}+1}=x \frac{1+\frac{2}{x^{2}}}{1+\frac{1}{x^{2}}}=x\left(1+\frac{2}{x^{2}}\right)\left(1-\frac{1}{x^{2}}+\frac{1}{x^{4}}+\cdots\right)=x\left(1+\frac{1}{x^{2}}-\frac{1}{x^{4}}+\frac{1}{x^{6}}-\frac{1}{x^{8}}+\cdots\right)$ from which we can read off $f(x) \approx x+\frac{1}{x}$ as $|x| \rightarrow \infty$.

2. TAYLOR EXPANSION

(5) (Review) Use linear approximations to estimate:
(a) $\log \frac{4}{3}$ and $\log \frac{2}{3}$. Combine the two for an estimate of $\log 2$.

Solution: Let $f(x)=\log x$ so that $f^{\prime}(x)=\frac{1}{x}$. Then $f(1)=0$ and $f^{\prime}(1)=1$ so $f\left(1+\frac{1}{3}\right) \approx \frac{1}{3}$
and $f\left(1-\frac{1}{3}\right) \approx-\frac{1}{3}$. Then $\log 2=\log \frac{4}{3} / \frac{2}{3}=\log \frac{4}{3}-\log \frac{2}{3} \approx \frac{2}{3}$.
(b) $\sin 0.1$ and $\cos 0.1$.

Solution: Let $f(x)=\sin x$ so that $g(x)=f^{\prime}(x)=\cos x$ and $g^{\prime}(x)=-\sin x$. Then $f(1)=0$ and $g(0)=f^{\prime}(0)=\cos 0=1$ while $g^{\prime}(0)=-\sin 0=0$. So $f(0.1) \approx 0+1 \cdot 0.1 \approx 0.1$ and $g(0.1) \approx 1-0 \cdot 0.01=1$.
(6) Let $f(x)=e^{x}$
(a) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(b) Find a polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(c) Find a polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(d) Find a polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(e) Find a polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.

Solution: $\quad f(x)=f^{\prime}(x)=f^{(2)}(x)=\cdots=e^{x}$ so $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=1$. Now $T_{0}(x)=1$ works, as does $T_{1}(x)=1+x$. If $T_{2}(x)=1+x+c x^{2}$ then $T_{2}^{\prime \prime}(x)=2 c=1$ means $c=\frac{1}{2}$ and $T_{2}(x)=1+x+\frac{1}{2} x^{2}$. Finally, $T_{3}(x)=1+x+\frac{1}{2} x^{2}+d x^{3}$ works if $6 d=1$ so if $d=\frac{1}{6}$.
(7) Do the same with $f(x)=\log x$ about $x=1$.

Solution: $\quad f^{\prime}(x)=\frac{1}{x}, f^{\prime \prime}(x)=-\frac{1}{x^{2}}, f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}$ so $f(1)=0, f^{\prime}(1)=1, f^{\prime \prime}(1)=-1, f^{\prime \prime \prime}(1)=2$. Try $T_{3}(x)=a+b x+c x^{2}+d x^{3}$ (can truncate later). Need $a=0$ to make $T_{3}(x)=0$. Diff we get
$T_{3}^{\prime}(x)=b+2 c x+3 d x^{2}$, setting $x=0$ gives $b=1$. Diff again gives $T_{3}^{\prime \prime}(x)=2 c+6 d x$ so $2 c=-1$ and $c=-\frac{1}{2}$. Diff again give $T_{3}^{\prime \prime \prime}(x)=6 d=2$ so $d=\frac{1}{3}$ and $T_{3}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}$. Truncate this to get T_{0}, T_{1}, T_{2}.
Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

(8) Find the 4th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about $x=0$)

Solution: $\quad f^{\prime}(x)=\frac{1}{(1-x)^{2}}, f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}}, f^{(3)}(x)=\frac{6}{(1-x)^{4}}, f^{(4)}(x)=\frac{24}{(1-x)^{5}} f^{(k)}(0)=k!$ and the Taylor expansion is $1+x+x^{2}+x^{3}+x^{4}$.
(9) Find the nth order expansion of $\cos x$, and approximate $\cos 0.1$ using a 3rd order expansion

Solution: $\quad(\cos x)^{\prime}=-\sin x,(\cos x)^{(2)}=-\cos x,(\cos x)^{(3)}=\sin x,(\cos x)^{(4)}(x)=\cos x$ and the pattern repeats. Plugging in zero we see that the derivatives at 0 (starting with the zeroeth) are $1,0,-1,0,1,0,-1,0, \ldots$ so the Taylor expansion is

$$
\cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\cdots
$$

In particular, $\cos 0.1 \approx 1-\frac{1}{2}(0.1)^{2}=0.995$.
(10) (Final, 2015) Let $T_{3}(x)=24+6(x-3)+12(x-3)^{2}+4(x-3)^{3}$ be the third-degree Taylor polynomial of some function f, expanded about $a=3$. What is $f^{\prime \prime}(3)$?

Solution: We have $c_{2}=\frac{f^{(2)}}{2!}=12$ so $f^{(2)}=24$.
(11) In labour economics, the CES production function is the functional form $Q(K, E)=\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{1 / \delta}$. Here K is capital, E is employment, and $\delta<1$ measures the degree of substitution between labour and capital. Find the linear and quadratic expansions of Q in the variable E about the point $\left(K_{0}, E_{0}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$ if $\alpha=\frac{1}{2}$.

Solution: $\quad \frac{\partial Q}{\partial E}=\frac{1-\alpha}{\delta}\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{1 / \delta-1} \delta E^{\delta-1}=(1-\alpha)\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{1 / \delta-1} E^{\delta-1}$. Thus

$$
\begin{aligned}
\frac{\partial^{2} Q}{\partial E^{2}} & =(1-\alpha)(1-\delta)\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{1 / \delta-2} E^{2(\delta-1)}+(1-\alpha)(1-\delta)\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{1 / \delta-1} E^{\delta-2} \\
& =(1-\alpha)(1-\delta)\left[\alpha K^{\delta}+(1-\alpha) E^{\delta}\right]^{1 / \delta-2} E^{\delta-2}\left[\alpha K^{\delta}+(2-\alpha) E^{\delta}\right]
\end{aligned}
$$

Plugging in $\alpha=K=E=\frac{1}{2}$ gives $Q\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2} ; Q^{\prime}\left(\frac{1}{2}, \frac{1}{2}\right)=2, Q^{\prime \prime}\left(\frac{1}{2}, \frac{1}{2}\right)=8(1-\delta)$ so for E close to $\frac{1}{2}$ we have

$$
Q\left(\frac{1}{2}, E\right) \approx \frac{1}{2}+2\left(E-\frac{1}{2}\right)+4(1-\delta)\left(E-\frac{1}{2}\right)^{2}
$$

correct to second order.

3. NEW EXPANSIONS FROM OLD

(12) (Final, 2016) Use a 3rd order Taylor approximation to estimate $\sin 0.01$. Then find the 3 rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.

Solution: Let $f(x)=\sin x$. Then $f^{\prime}(x)=\cos x, f^{(2)}(x)=-\sin x$ and $f^{(3)}(x)=-\cos x$. Thus $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f^{(3)}(0)=-1$ and the third-order expansion of $\sin x$ is $0+\frac{1}{1!} x+\frac{0}{2!} x^{2}+\frac{(-1)}{3!} x^{3}=x-\frac{1}{6} x^{3}$. In particular $\sin 0.1 \approx 0.1-\frac{1}{6000}$. We then also have, correct to third order, that

$$
(x+1) \sin x \approx(x+1)\left(x-\frac{1}{6} x^{3}\right)=x+x^{2}-\frac{1}{6} x^{3}-\frac{1}{6} x^{4} \approx x+x^{2}-\frac{1}{6} x^{3}
$$

(13) Find the 3rd order Taylor expansion of $\sqrt{x}-\frac{1}{4} x$ about $x=4$.

Solution: Let $f(x)=\sqrt{x}$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, f^{(2)}(x)=-\frac{1}{4 x^{3 / 2}}$ and $f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}$. Thus $f(4)=2, f^{\prime}(4)=\frac{1}{4}, f^{(2)}(4)=-\frac{1}{32}, f^{(3)}(4)=\frac{3}{256}$ and the third-order expansions are

$$
\begin{aligned}
\sqrt{x} & \approx 2+\frac{1}{4}(x-4)-\frac{1}{32 \cdot 2!}(x-4)^{3}+\frac{3}{256 \cdot 3!}(x-4)^{3} \\
\frac{1}{4} x & \approx 1+\frac{1}{4}(x-4)
\end{aligned}
$$

so that

$$
\sqrt{x}-\frac{1}{4} x \approx 1-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3} .
$$

(14) Find the 8 th order expansion of $f(x)=e^{x^{2}}-\frac{1}{1+x^{3}}$. What is $f^{(6)}(0)$?

Solution: To fourth order we have $e^{u} \approx 1+u+\frac{u^{2}}{2}+\frac{u^{3}}{6}+\frac{u^{4}}{24}+\frac{u^{5}}{120}$ so $e^{x^{2}} \approx 1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}$ to 8 th order. We also know that $\frac{1}{1-u} \approx 1+u+u^{2}+u^{3}$ so $\frac{1^{3}}{1+x^{3}} \approx 1-x^{3}+x^{6}$ correct to 8 th order. We conclude that

$$
\begin{aligned}
e^{x^{2}}+\cos (2 x) & \approx\left(1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}\right)-\left(1-x^{3}+x^{6}\right) \\
& \approx x^{2}-x^{3}+\frac{1}{2} x^{4}-\frac{5}{6} x^{6}+\frac{1}{24} x^{8}
\end{aligned}
$$

In particular, $\frac{f^{(6)}(0)}{6!}=-\frac{5}{6}$ so $f^{(6)}(0)=-720 \cdot \frac{5}{6}=-600$.
(15) Show that $\log \frac{1+x}{1-x} \approx 2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

Solution: Let $f(x)=\log (1+x)$. Then $f^{\prime}(x)=\frac{1}{1+x}, f^{(2)}(x)=-\frac{1}{(1+x)^{2}}, f^{(3)}(x)=\frac{1 \cdot 2}{(1+x)^{3}}$, $f^{(4)}(x)=-\frac{1 \cdot 2 \cdot 3}{(1+x)^{4}}$ and so on, so $f^{(k)}(x)=(-1)^{k-1} \cdot \frac{(k-1)!}{(1+x)^{k}}$. We thus have that $f(0)=0$ and for $k \geq 1$ that $f^{(k)}(0)=(-1)^{k-1}(k-1)!$. Then $\frac{f^{(k)}(0)}{k!}=\frac{(-1)^{k-1}}{k}$ so

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

Plugging $-x$ we get:

$$
\log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4} \ldots
$$

so

$$
\log \frac{1+x}{1-x}=\log (1+x)-\log (1-x)=2 x+2 \frac{x^{3}}{3}+2 \frac{x^{5}}{5}+\cdots
$$

In particular

$$
\log 3=\log \frac{1+\frac{1}{2}}{1-\frac{1}{2}}=2\left(\frac{1}{2}+\frac{1}{24}+\frac{1}{160}+\cdots\right)=1+\frac{1}{12}+\frac{1}{80}+\cdots \approx 1.096
$$

[^0]: Date: 20/10/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

