
Math 100C – SOLUTIONS TO WORKSHEET 6
CURVE SKETCHING; TAYLOR EXPANSION

1. Curve sketching

Let f(x) = x3+2
x2+1 ; and that f ′′(x) = −2x

3−6x2−3x+2
(x2+1)3

(1) Zeroeth derivative questions
(a) Where is f defined?

Solution: f is defined on the entire axis since x2 + 1 > 0 for all x.
(b) List the vertical asymptotes of f , if any?

Solution: No; f is defined by formula hence continuous everywhere and does not blow up.
(c) What are the asymptotic behaviours of f at ±∞?

Solution: When x is large (whether negative or positive) we have x3 + 2 ∼ x3 and x2 + 1 so
f(x) ∼ x3

x2 = x on both ends.
(d) Where does f meet the axes?

Solution: f(0) = 2; f(x) = 0 iff x3 = −2 that is at x = − 3
√
2.

(2) It is a fact that f ′(x) = x(x−1)(x2+x+4)
(x2+1)2

(a) Where is f differentiable?
Solution: f ′ is defined on the entire axis since x2 + 1 > 0 for all x.

(b) Where does f ′(x) = 0? Where it is positive? Negative?
Solution: Clearly f ′(0) = f ′(1) = 0. Now x2+x+4 = (x+ 1

2 )
2+ 15

4 is positive everywhere so
the only zeroes of the derivative are 0, 1. The sign of the derivative is then the sign of x(x− 1)
so the derivative is positive when x < 0 or x > 1 and negative when 0 < x < 1.

(c) Where are the local extrema of f? What are the values at those points?
Solution: x = 0 is a local maximum, since f is increasing on its left and decreasing on its
right. x = 1 is a local minimum for the same reasons. f(0) = 2, f(1) = 3

2 .
(3) It is a fact that f ′′(x) = −2x

3−6x2−3x+2
(x2+1)3 .

(a) Where is f ′′ positive/negative? Where does it vanish? Say as much as you can.
Solution: The sign of f ′′ is the sign of h(x) = −

(
x3 − 6x2 − 3x+ 2

)
. Now h(x) ∼ −x3

at infinity, so h is positive for x � 0 and negative for x � 0. Next, h(0) = −2 < 0 and
h(1) = 6 > 0. Since h(−1) = 2 > 0 we conclude that f ′′ is initially positive, crosses the axis
somewhere on (−1, 0) to become negative, crossess the axis again on (0, 1), and the crosses the
axis a final time to become negative somewhere on (1,∞). Since h is cubic polynomial it has
at most three roots, so those are the only sign changes of h hence of f ′′.

(b) Where is f concave up/down? Where are its inflection points?
Solution: By part (a) we conclude that f is initially concave down, has an inflection point
somehwere on (−1, 0) after which it is concave up, has a second inflection point on (0, 1) after
which it is concave down, and then has a third inflection point after which it is concave up.

(4) Draw a sketch of the graph of f , incorporating all the features you have identified in questions 1-3.
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• Extra credit: Find the constant b so that f(x) ≈ x+b as x→∞ (in the sense that f(x)−x−b→ 0).
We call this line a slant asymptote for f .

Solution: x3+2
x2+1 − x = 2−x

x2+1 ∼ −
1
x → 0 so f(x) ≈ x is actually correct.

Solution: We have x3+2
x2+1 = x

1+ 2
x2

1+ 1
x2

= x
(
1 + 2

x2

) (
1− 1

x2 + 1
x4 + · · ·

)
= x

(
1 + 1

x2 − 1
x4 + 1

x6 − 1
x8 + · · ·

)
from which we can read off f(x) ≈ x+ 1

x as |x| → ∞.

2. Taylor expansion

(5) (Review) Use linear approximations to estimate:
(a) log 4

3 and log 2
3 . Combine the two for an estimate of log 2.

Solution: Let f(x) = log x so that f ′(x) = 1
x . Then f(1) = 0 and f ′(1) = 1 so f(1 + 1

3 ) ≈
1
3

and f(1− 1
3 ) ≈ −

1
3 . Then log 2 = log 4

3

/
2
3 = log 4

3 − log 2
3 ≈

2
3 .

(b) sin 0.1 and cos 0.1.
Solution: Let f(x) = sinx so that g(x) = f ′(x) = cosx and g′(x) = − sinx. Then f(1) = 0
and g(0) = f ′(0) = cos 0 = 1 while g′(0) = − sin 0 = 0. So f(0.1) ≈ 0 + 1 · 0.1 ≈ 0.1 and
g(0.1) ≈ 1− 0 · 0.01 = 1.

(6) Let f(x) = ex

(a) Find f(0), f ′(0), f (2)(0), · · ·
(b) Find a polynomial T0(x) such that T0(0) = f(0).
(c) Find a polynomial T1(x) such that T1(0) = f(0) and T ′1(0) = f ′(0).
(d) Find a polynomial T2(x) such that T2(0) = f(0), T ′2(0) = f ′(0) and T (2)

2 (0) = f (2)(0).
(e) Find a polynomial T3(x) such that T (k)

3 (0) = f (k)(0) for 0 ≤ k ≤ 3.
Solution: f(x) = f ′(x) = f (2)(x) = · · · = ex so f(0) = f ′(0) = f ′′(0) = · · · = 1. Now
T0(x) = 1 works, as does T1(x) = 1 + x. If T2(x) = 1 + x + cx2 then T ′′2 (x) = 2c = 1 means
c = 1

2 and T2(x) = 1 + x+ 1
2x

2. Finally, T3(x) = 1 + x+ 1
2x

2 + dx3 works if 6d = 1 so if d = 1
6 .

(7) Do the same with f(x) = log x about x = 1.
Solution: f ′(x) = 1

x , f
′′(x) = − 1

x2 , f ′′′(x) = 2
x3 so f(1) = 0, f ′(1) = 1, f ′′(1) = −1, f ′′′(1) = 2.

Try T3(x) = a + bx + cx2 + dx3 (can truncate later). Need a = 0 to make T3(x) = 0. Diff we get
2



T ′3(x) = b + 2cx + 3dx2, setting x = 0 gives b = 1. Diff again gives T ′′3 (x) = 2c + 6dx so 2c = −1
and c = − 1

2 . Diff again give T ′′′3 (x) = 6d = 2 so d = 1
3 and T3(x) = (x− 1)− 1

2 (x− 1)2 + 1
3 (x− 1)3.

Truncate this to get T0, T1, T2.

Let ck = f(k)(a)
k! . The nth order Taylor expansion of f(x) about x = a is the polynomial

Tn(x) = c0 + c1(x− a) + · · ·+ cn(x− a)n

(8) Find the 4th order MacLaurin expansion of 1
1−x (=Taylor expansion about x = 0)

Solution: f ′(x) = 1
(1−x)2 , f

′′(x) = 2
(1−x)3 , f

(3)(x) = 6
(1−x)4 , f

(4)(x) = 24
(1−x)5 f

(k)(0) = k! and
the Taylor expansion is 1 + x+ x2 + x3 + x4.

(9) Find the nth order expansion of cosx, and approximate cos 0.1 using a 3rd order expansion
Solution: (cosx)

′
= − sinx, (cosx)(2) = − cosx, (cosx)(3) = sinx, (cosx)(4) (x) = cosx and

the pattern repeats. Plugging in zero we see that the derivatives at 0 (starting with the zeroeth) are
1, 0,−1, 0, 1, 0,−1, 0, . . . so the Taylor expansion is

cosx = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·

In particular, cos 0.1 ≈ 1− 1
2 (0.1)

2 = 0.995.
(10) (Final, 2015) Let T3(x) = 24+ 6(x−3)+ 12(x−3)2 +4(x−3)3 be the third-degree Taylor polynomial

of some function f , expanded about a = 3. What is f ′′(3)?
Solution: We have c2 = f(2)

2! = 12 so f (2) = 24.

(11) In labour economics, the CES production function is the functional formQ(K,E) =
[
αKδ + (1− α)Eδ

]1/δ.
Here K is capital, E is employment, and δ < 1 measures the degree of substitution between labour
and capital. Find the linear and quadratic expansions of Q in the variable E about the point
(K0, E0) =

(
1
2 ,

1
2

)
if α = 1

2 .

Solution: ∂Q
∂E = 1−α

δ

[
αKδ + (1− α)Eδ

]1/δ−1
δEδ−1 = (1 − α)

[
αKδ + (1− α)Eδ

]1/δ−1
Eδ−1.

Thus

∂2Q

∂E2
= (1− α)(1− δ)

[
αKδ + (1− α)Eδ

]1/δ−2
E2(δ−1) + (1− α)(1− δ)

[
αKδ + (1− α)Eδ

]1/δ−1
Eδ−2

= (1− α)(1− δ)
[
αKδ + (1− α)Eδ

]1/δ−2
Eδ−2

[
αKδ + (2− α)Eδ

]
.

Plugging in α = K = E = 1
2 gives Q( 12 ,

1
2 ) =

1
2 ; Q

′( 12 ,
1
2 ) =2, Q′′( 12 ,

1
2 ) = 8(1 − δ) so for E close to

1
2 we have

Q(
1

2
, E) ≈ 1

2
+ 2(E − 1

2
) + 4(1− δ)(E − 1

2
)2

correct to second order.

3. New expansions from old

(12) (Final, 2016) Use a 3rd order Taylor approximation to estimate sin 0.01. Then find the 3rd order
Taylor expansion of (x+ 1) sinx about x = 0.

Solution: Let f(x) = sinx. Then f ′(x) = cosx, f (2)(x) = − sinx and f (3)(x) = − cosx.
Thus f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f (3)(0) = −1 and the third-order expansion of sinx is
0 + 1

1!x+
0
2!x

2 + (−1)
3! x

3 = x− 1
6x

3. In particular sin 0.1 ≈ 0.1− 1
6000 . We then also have, correct to

third order, that

(x+ 1) sinx ≈ (x+ 1)

(
x− 1

6
x3

)
= x+ x2 − 1

6
x3 − 1

6
x4 ≈ x+ x2 − 1

6
x3 .

(13) Find the 3rd order Taylor expansion of
√
x− 1

4x about x = 4.
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Solution: Let f(x) =
√
x. Then f ′(x) = 1

2
√
x
, f (2)(x) = − 1

4x3/2 and f (3)(x) = 3
8x
−5/2. Thus

f(4) = 2, f ′(4) = 1
4 , f

(2)(4) = − 1
32 , f

(3)(4) = 3
256 and the third-order expansions are

√
x ≈ 2 +

1

4
(x− 4)− 1

32 · 2!
(x− 4)

3
+

3

256 · 3!
(x− 4)3

1

4
x ≈ 1 +

1

4
(x− 4)

so that √
x− 1

4
x ≈ 1− 1

64
(x− 4)2 +

1

512
(x− 4)3 .

(14) Find the 8th order expansion of f(x) = ex
2 − 1

1+x3 . What is f (6)(0)?
Solution: To fourth order we have eu ≈ 1+u+ u2

2 + u3

6 + u4

24 +
u5

120 so ex
2 ≈ 1+x2+ x4

2 + x6

6 + x8

24

to 8th order. We also know that 1
1−u ≈ 1 + u+ u2 + u3 so 1

1+x3 ≈ 1− x3 + x6 correct to 8th order.
We conclude that

ex
2

+ cos(2x) ≈
(
1 + x2 +

x4

2
+
x6

6
+
x8

24

)
−

(
1− x3 + x6

)
≈ x2 − x3 + 1

2
x4 − 5

6
x6 +

1

24
x8 .

In particular, f
(6)(0)
6! = − 5

6 so f (6)(0) = −720 · 5
6 = −600.

(15) Show that log 1+x
1−x ≈ 2(x+ x3

3 + x5

5 + · · · ). Use this to get a good approximation to log 3 via a careful
choice of x.

Solution: Let f(x) = log(1 + x). Then f ′(x) = 1
1+x , f

(2)(x) = − 1
(1+x)2 , f

(3)(x) = 1 · 2
(1+x)3 ,

f (4)(x) = − 1 · 2 · 3
(1+x)4 and so on, so f (k)(x) = (−1)k−1 · (k−1)!

(1+x)k
. We thus have that f(0) = 0 and for

k ≥ 1 that f (k)(0) = (−1)k−1(k − 1)!. Then f(k)(0)
k! = (−1)k−1

k so

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · .

Plugging −x we get:

log(1− x) = −x− x2

2
− x3

3
− x4

4
· · ·

so

log
1 + x

1− x
= log(1 + x)− log(1− x) = 2x+ 2

x3

3
+ 2

x5

5
+ · · · .

In particular

log 3 = log
1 + 1

2

1− 1
2

= 2

(
1

2
+

1

24
+

1

160
+ · · ·

)
= 1 +

1

12
+

1

80
+ · · · ≈ 1.096
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