# Math 100C - SOLUTIONS TO WORKSHEET 5 THE CHAIN RULE ETC 

## 1. The Chain Rule

(1) We know $\frac{d}{d y} \sin y=\cos y$.
(a) Expand $\sin (y+h)$ to linear order in $h$. Write down the linear approximation to $\sin y$ about $y=a$.
Solution: $\sin (y+h) \approx \sin y+h \cos y$ and $\sin y \approx \sin a+(y-a) \cos a$.
(b) Now let $F(x)=\sin (3 x)$. Expand $F(x+h)$ to linear order in $h$. What is the derivative of $\sin 3 x$ ? Solution: $\quad F(x+h)=\sin (3(x+h)=\sin (3 x+3 h)$ so we use $y=3 x$ in the previous example to get

$$
\begin{aligned}
F(x+h) & =\sin (3(x+h)) \\
& =\sin (3 x+3 h) \\
& \approx \sin (3 x)+(3 h) \cos (3 x) \\
& =\sin (3 x)+(3 \cos (3 x)) h
\end{aligned}
$$

so the derivative is $3 \cos (3 x)$.
(2) Write each function as a composition and differentiate
(a) $e^{3 x}$

Solution: This is $f(g(x))$ where $g(x)=3 x$ and $f(y)=e^{y}$. The derivative is thus

$$
e^{3 x} \cdot \frac{\mathrm{~d}(3 x)}{\mathrm{d} x}=3 e^{3 x}
$$

(b) $\sqrt{2 x+1}$

Solution: This is $f(g(x))$ where $g(x)=2 x+1$ and $f(y)=\sqrt{y}$. Thus

$$
\frac{\mathrm{d} f(g(x))}{\mathrm{d} x}=f^{\prime}(g(x)) g^{\prime}(x)=\frac{1}{2 \sqrt{g}} \cdot 2=\frac{1}{\sqrt{2 x+1}}
$$

(c) (Final, 2015) $\sin \left(x^{2}\right)$

Solution: This is $f(g(x))$ where $g(x)=x^{2}$ and $f(y)=y^{2}$. The derivative is then

$$
\cos \left(x^{2}\right) \cdot 2 x=2 x \cos \left(x^{2}\right)
$$

(d) $(7 x+\cos x)^{n}$.

Solution: This is $f(g(x))$ where $g(x)=7 x+\cos x$ and $f(y)=y^{n}$. The derivative is thus

$$
n(7 x+\cos x)^{n-1} \cdot(7-\sin x)
$$

(3) (Final, 2012) Let $f(x)=g(2 \sin x)$ where $g^{\prime}(\sqrt{2})=\sqrt{2}$. Find $f^{\prime}\left(\frac{\pi}{4}\right)$.

Solution: By the chain rule, $f^{\prime}(x)=g^{\prime}(2 \sin x) \cdot \frac{\mathrm{d}}{\mathrm{d} x}(2 \sin x)=2 g^{\prime}(2 \sin x) \cos x$. In particular,

$$
\begin{aligned}
f^{\prime}\left(\frac{\pi}{4}\right) & =2 g^{\prime}\left(2 \sin \frac{\pi}{4}\right) \cos \frac{\pi}{4}=2 g^{\prime}\left(2 \frac{\sqrt{2}}{2}\right) \cdot \frac{\sqrt{2}}{2} \\
& =2 \sqrt{2} \cdot \frac{\sqrt{2}}{2}=2
\end{aligned}
$$

(4) Differentiate
(a) $7 x+\cos \left(x^{n}\right)$

Solution: We apply linearity and then the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(7 x+\cos \left(x^{n}\right)\right) & =\frac{\mathrm{d}(7 x)}{\mathrm{d} x}+\frac{\mathrm{d} \cos \left(x^{n}\right)}{\mathrm{d} x} \\
& =7+\frac{\mathrm{d} \cos \left(x^{n}\right)}{\mathrm{d}\left(x^{n}\right)} \cdot \frac{\mathrm{d}\left(x^{n}\right)}{\mathrm{d} x} \\
& =7-\sin \left(x^{n}\right) \cdot n x^{n-1}
\end{aligned}
$$

(b) $e^{\sqrt{\cos x}}$

Solution: We repeatedly apply the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} e^{\sqrt{\cos x}} & =e^{\sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \sqrt{\cos x} \\
& =e^{\sqrt{\cos x}} \frac{1}{2 \sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x \\
& =-e^{\sqrt{\cos x}} \frac{\sin x}{2 \sqrt{\cos x}}
\end{aligned}
$$

(c) (Final 2012) $e^{(\sin x)^{2}}$

Solution: By the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{(\sin x)^{2}}\right) & =e^{(\sin x)^{2}} \frac{\mathrm{~d}}{\mathrm{~d} x}\left((\sin x)^{2}\right) \\
& =e^{(\sin x)^{2}} 2 \sin x \frac{\mathrm{~d}}{\mathrm{~d} x} \sin x \\
& =e^{(\sin x)^{2}} 2 \sin x \cos x \\
& =e^{(\sin x)^{2}} \sin (2 x)
\end{aligned}
$$

(5) Suppose $f, g$ are differentiable functions with $f(g(x))=x^{3}$. Suppose that $f^{\prime}(g(4))=5$. Find $g^{\prime}(4)$.

Solution: Applying the chain rule we have $f^{\prime}(g(x)) \cdot g^{\prime}(x)=3 x^{2}$. Plugging in $x=4$ we get $5 g^{\prime}(4)=3 \cdot 4^{2}$ and hence $g^{\prime}(4)=\frac{48}{5}$.

## 2. Logarithmic differentiation

(6) $\log \left(e^{10}\right)=$

$$
\log \left(2^{100}\right)=
$$

Solution: $\quad \log e^{10}=10$ while $\log \left(2^{100}\right)=100 \log 2$.
(7) Differentiate
(a) $\frac{\mathrm{d}(\log (a x))}{\mathrm{d} x}=$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \log \left(t^{2}+3 t\right)=
$$

Solution: By the chain rule, the derivatives are: $\frac{1}{a x} \cdot a=\frac{1}{x}$ and $\frac{1}{t^{2}+3 t} \cdot(2 t+3)=\frac{2 t+t}{t^{2}+3 t}$. We can also use the $\operatorname{logarithm~laws~first:~} \log (a x)=\log a+\log x$ so $\frac{\mathrm{d}}{\mathrm{d} x}(\log a x)=\frac{\mathrm{d}}{\mathrm{d} x}(\log a)+\frac{\mathrm{d}}{\mathrm{d} x}(\log x)=\frac{1}{x}$ since $\log a$ is constant if $a$ is. Similarly, $\log \left(t^{2}+3 t\right)=\log t+\log (t+3)$ so its derivative is $\frac{1}{t}+\frac{1}{t+3}$.
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2} \log \left(1+x^{2}\right)=$

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1}{\log (2+\sin r)}=
$$

Solution: Applying the product rule and then the chain rule we get: $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} \log \left(1+x^{2}\right)\right)=$ $2 x \log \left(1+x^{2}\right)+x^{2} \frac{1}{1+x^{2}} \cdot 2 x=2 x \log \left(1+x^{2}\right)+\frac{2 x^{3}}{1+x^{2}}$. Using the quotient rule and the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1}{\log (2+\sin r)}=-\frac{1}{\log ^{2}(2+\sin r)} \cdot \frac{1}{2+\sin r} \cdot \cos r=-\frac{\cos r}{(2+\sin r) \log ^{2}(2+\sin r)} .
$$

(8) (Logarithmic differentiation) differentiate $y=\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x}$.

Solution: We have

$$
\begin{aligned}
\log y & =\log \left(x^{2}+1\right)+\log (\sin x)+\log \left(\frac{1}{\sqrt{x^{3}+3}}\right)+\log \left(e^{\cos x}\right) \\
& =\log \left(x^{2}+1\right)+\log (\sin x)-\frac{1}{2} \log \left(x^{3}+3\right)+\cos x
\end{aligned}
$$

Differentiating with respect to $x$ gives:

$$
\frac{y^{\prime}}{y}=\frac{2 x}{x^{2}+1}+\frac{\cos x}{\sin x}-\frac{1}{2} \frac{3 x^{2}}{x^{3}+3}-\sin x
$$

and solving for $y^{\prime}$ finally gives

$$
y^{\prime}=\left(\frac{2 x}{x^{2}+1}+\frac{\cos x}{\sin x}-\frac{3 x}{2\left(x^{3}+3\right)}-\sin x\right) \cdot\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x}
$$

(9) Differentiate using $f^{\prime}=f \times(\log f)^{\prime}$
(a) $x^{n}$

Solution: If $y=x^{n}$ then $\log y=n \log x$. Differentiating with respect to $x$ gives $\frac{1}{y} y^{\prime}=\frac{n}{x}$ so $y^{\prime}=y \frac{n}{x}=n x^{n-1}$.
Solution: By the rule, $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{n}\right)=x^{n} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\log \left(x^{n}\right)\right)=x^{n}\left(\frac{n}{x}\right)=n x^{n-1}$.
(b) $x^{x}$

Solution: If $y=x^{x}$ then $\log y=x \log x$. Differentiating with respect to $x$ gives $\frac{1}{y} y^{\prime}=$ $\log x+x \cdot \frac{1}{x}=\log x+1$ so $y^{\prime}=y(\log x+1)=x^{x}(\log x+1)$.
Solution: By the rule, $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{x}\right)=x^{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\log \left(x^{x}\right)\right)=x^{x}(\log x+1)$.
Solution: We have $x^{x}=\left(e^{\log x}\right)^{x}=e^{x \log x}$. Applying the chain rule we now get $\left(x^{x}\right)^{\prime}=$ $e^{x \log x}(\log x+1)=x^{x}(\log x+1)$.
(c) $(\log x)^{\cos x}$

Solution: By the logarithmic differentiation rule we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\log x)^{\cos x} & =(\log x)^{\cos x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x \log (\log x)) \\
& =-\sin x \log \log x(\log x)^{\cos x}+(\log x)^{\cos x} \cos x \frac{1}{\log x} \frac{1}{x} \\
& =-\sin x \log \log x(\log x)^{\cos x}+\cos x(\log x)^{\cos x-1} \frac{1}{x}
\end{aligned}
$$

(d) (Final, 2014) Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $x$ only.

Solution: By the logarithmic differentiation rule we have

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =y \frac{\mathrm{~d} \log y}{\mathrm{~d} x}=x^{\log x} \frac{\mathrm{~d}}{\mathrm{~d} x}(\log x \cdot \log x) \\
& =x^{\log x}\left(2 \log x \cdot \frac{1}{x}\right)=2 \log x \cdot x^{\log x-1}
\end{aligned}
$$

## 3. Implicit Differentiation

(10) Find the line tangent to the curve $y^{2}=4 x^{3}+2 x$ at the point $(2,6)$.

Solution: Differentiating with respect to $x$ we find $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=12 x^{2}+2$, so that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x^{2}+1}{y}$. In particular at the point $(2,6)$ the slope is $\frac{25}{6}$ and the line is

$$
y=\frac{25}{6}(x-2)+6
$$

(11) (Final, 2015) Let $x y^{2}+x^{2} y=2$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,1)$.

Solution: Differentiating with respect to $x$ we find $y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ along the curve. Setting $x=y=1$ we find that, at the indicated point,

$$
3+\left.3 \frac{\mathrm{~d} y}{\mathrm{~d} x}\right|_{(1,1)}=0
$$

so

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{(1,1)}=-1
$$

(12) (Final 2012) Find the slope of the line tangent to the curve $y+x \cos y=\cos x$ at the point $(0,1)$.

Solution: Differentiating with respect to $x$ we find $y^{\prime}+\cos y-x \sin y \cdot y^{\prime}=-\sin x$, so that $y^{\prime}=-\frac{\sin x+\cos y}{1-x \sin y}=\frac{\sin x+\cos y}{x \sin y-1}$. Setting $x=0, y=1$ we get that at that point $y^{\prime}=\frac{\cos 1}{-1}=-\cos 1$.
(13) Find $y^{\prime \prime}$ (in terms of $x, y$ ) along the curve $x^{5}+y^{5}=10$ (ignore points where $y=0$ ).

Solution: Differentiating with respect to $x$ we find $5 x^{4}+5 y^{4} y^{\prime}=0$, so that $y^{\prime}=-\frac{x^{4}}{y^{4}}$. Differentiating again we find

$$
y^{\prime \prime}=-\frac{4 x^{3}}{y^{4}}+\frac{4 x^{4} y^{\prime}}{y^{5}}=-\frac{4 x^{3}}{y^{4}}-\frac{4 x^{8}}{y^{9}}
$$

## 4. Inverse trig functions

(14) Evaluation
(a) (Final 2014) Evaluate $\arcsin \left(-\frac{1}{2}\right)$; Find $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)$.

Solution: $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ so $\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}$. Also $\sin \left(\frac{31 \pi}{11}\right)=\sin \left(\frac{31 \pi}{11}-2 \pi\right)=\sin \left(\frac{9 \pi}{11}\right)=$ $\sin \left(\pi-\frac{9 \pi}{11}\right)=\sin \left(\frac{2 \pi}{11}\right)$ and $\frac{2 \pi}{11} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)=\frac{2 \pi}{11}$.
(b) (Final 2015) Simplify $\sin (\arctan 4)$

Solution: Consider the right-angled triangle with sides 4,1 and hypotenuse $\sqrt{1+4^{2}}=$ $\sqrt{17}$. Let $\theta$ be the angle opposite the side of length 4 . Then $\tan \theta=4$ and $\sin \theta=\frac{4}{\sqrt{17}}$ so $\sin (\arctan 4)=\sin \theta=\frac{4}{\sqrt{17}}$.
(c) Find $\tan (\arccos (0.4))$

Solution: Consider the right-angled triangle with sides $0.4, \sqrt{1-0.4^{2}}$ and hypotenuse 1 . Let $\theta$ be the angle between the side of length 0.4 and the hypotenuse. Then $\cos \theta=\frac{0.4}{1}=0.4$ and $\tan \theta=\frac{\sqrt{1-0.4^{2}}}{0.4}=\frac{\sqrt{0.84}}{0.4}=\sqrt{\frac{0.84}{0.16}}=\sqrt{5.25}$.
(15) Differentiation
(a) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arctan x)$

Solution: Let $\theta=\arctan x$. Then $x=\tan \theta$ so by the chain rule $1=\frac{d x}{d x}=\frac{d \tan \theta}{d x}=$ $\frac{d \tan \theta}{d \theta} \cdot \frac{d \theta}{d x}=\left(1+\tan ^{2} \theta\right) \frac{d \theta}{d x}$ so

$$
\frac{d(\arctan x)}{d x}=\frac{d \theta}{d x}=\frac{1}{1+\tan ^{2} \theta}=\frac{1}{1+x^{2}}
$$

(b) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin (2 x))$

Solution: Since $\frac{\mathrm{d}}{\mathrm{d} x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}}$, the chain rule gives

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\arcsin (2 x))=\frac{2}{\sqrt{1-4 x^{2}}}
$$

Alternatively, let $\theta=\arcsin 2 x$, so that $\sin \theta=2 x$. Differentiating both sides we get

$$
\cos \theta \cdot \frac{\mathrm{d} \theta}{\mathrm{~d} x}=2
$$

so that

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} x}=\frac{2}{\cos \theta}=\frac{2}{\sqrt{1-\sin ^{2} \theta}}=\frac{2}{\sqrt{1-4 x^{2}}}
$$

(c) Find the line tangent to $y=\sqrt{1+(\arctan (x))^{2}}$ at the point where $x=1$.

Solution: Since $\frac{\mathrm{d}}{\mathrm{d} x} \arctan (x)=\frac{1}{1+x^{2}}$, the chain rule gives

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sqrt{1+(\arctan (x))^{2}} & =\frac{1}{2 \sqrt{1+(\arctan (x))^{2}}} \cdot 2 \arctan (x) \cdot \frac{1}{1+x^{2}} \\
& =\frac{\arctan x}{\left(1+x^{2}\right) \sqrt{1+(\arctan (x))^{2}}}
\end{aligned}
$$

Now $\arctan 1=\frac{\pi}{4}$ so the line is

$$
y=\frac{\pi}{8 \sqrt{1+\frac{\pi^{2}}{16}}}(x-1)+\sqrt{1+\frac{\pi^{2}}{16}}
$$

(d) Find $y^{\prime}$ if $y=\arcsin \left(e^{5 x}\right)$. What is the domain of the functions $y, y^{\prime}$ ?

Solution: From the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \arcsin \left(e^{5 x}\right)=\frac{1}{\sqrt{1-e^{10 x}}} 5 e^{5 x}=\frac{5 e^{5 x}}{\sqrt{1-e^{10 x}}}
$$

The function $y$ itself is defined when $-1 \leq e^{5 x} \leq 1$, that is when $5 x \leq 0$, that is when $x \leq 0$. The derivative is defined when $-1<e^{10 x}<1$, that is when $x<0$. The point is that $\operatorname{since} \sin \theta$ has horizontal tangents at $\pm \frac{\pi}{2}, \arcsin x$ has vertical tangents at $\pm 1$.
Solution: We can write the identity as $\sin y=e^{5 x}$ and differentiate both sides to get $y^{\prime} \cos y=$ $5 e^{5 x}$ so that

$$
y^{\prime}=\frac{5 e^{5 x}}{\cos y}=\frac{5 e^{5 x}}{\sqrt{1-\sin ^{2} y}}=\frac{5 e^{5 x}}{\sqrt{1-e^{10 x}}}
$$

