Math 100C - WORKSHEET 4 ARITHMETIC OF THE DERIVATIVE

1. Review of the derivative

(1) Expand $f(x+h)$ to linear order in h for the following functions and read the derivative off: (a) $f(x)=b x$
(b) $g(x)=a x^{2}$
(c) $h(x)=a x^{2}+b x$.
(d) $i(x)=\frac{1}{b+x}$
(e) $j(x)=4 x^{4}+5 x$ (hint: use the known linear approximation to $2 x^{2}$)
2. Arithmetic of derivatives

Fact. $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}, \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ $\frac{d}{d x} x^{n}=n x^{n-1}$.
(2) Differentiate
(a) $f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2}$
(b) (Final, 2016) $g(x)=x^{2} e^{x}$ (and then also $x^{a} e^{x}$)
(c) (Final, 2016) $h(x)=\frac{x^{2}+3}{2 x-1}$
(d) $\frac{x^{2}+A}{\sqrt{x}}$
(3) Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for A.
(4) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$.
(a) What are the linear approximations to f and g at $x=1$? Use them to find the linear approximation to $f g$ at $x=1$.
(b) Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.
(5) Evaluate
(a) $(x \cdot x)^{\prime}$ and $\left(x^{\prime}\right) \cdot\left(x^{\prime}\right)$. What did we learn?
(b) $\left(\frac{x}{x}\right)^{\prime}$ and $\frac{\left(x^{\prime}\right)}{\left(x^{\prime}\right)}$. What did we learn?
(6) The Lennart-Jones potential $V(r)=\epsilon\left(\left(\frac{R}{r}\right)^{12}-2\left(\frac{R}{r}\right)^{6}\right)$ models the electrostatic potential energy of a diatomic molecule. Here $r>0$ is the distance between the atoms and $\epsilon, R>0$ are constants. (a) What are the asymptotics of $V(r)$ as $r \rightarrow 0$ and as $r \rightarrow \infty$?
(b) Sketch a plot of $V(r)$.
(c) Find the derivative $\frac{d V}{d r}(r)=$
(d) Where is $V(r)$ increasing? decreasing? Find its minimum location and value.

