Math 100C - SOLUTIONS TO WORKSHEET 4 ARITHMETIC OF THE DERIVATIVE

1. Review of the derivative

(1) Expand $f(x+h)$ to linear order in h for the following functions and read the derivative off:
(a) $f(x)=b x$

Solution: $b(x+h)-b x=b h$ so the derivative is b.
Solution: $b(x+h)=b x+b h$ so the derivative is b.
(b) $g(x)=a x^{2}$

Solution: $a(x+h)^{2}-a x^{2}=2 a x h+a h^{2} \sim(2 a x) h$ so the derivative is $2 a x$.
Solution: $a(x+h)^{2}=a x^{2}+2 a x h+a h^{2} \approx a x^{2}+(2 a x) h$ so the derivative is $2 a x$.
(c) $h(x)=a x^{2}+b x$.

Solution: $\left(a(x+h)^{2}+b(x+h)\right)-\left(a x^{2}+b x\right)=2 a x h+a h^{2}+b h \sim(2 a x+b) h$ so the derivative is $2 a x+b$.
Solution:

$$
\begin{aligned}
a(x+h)^{2}+b(x+h) & =a x^{2}+2 a x h+a h^{2}+b x+b h \\
& =\left(a x^{2}+b x\right)+(2 a x+b) h+a h^{2} \\
& \approx\left(a x^{2}+b x\right)+(2 a x+b) h
\end{aligned}
$$

so the derivative is $2 a x+b$.
Solution: $a(x+h)^{2} \approx a x^{2}+2 a x h$ by part (a) and $b(x+h)=b x+b h$ by part (b) so

$$
\begin{aligned}
a(x+h)^{2}+b(x+h) & \approx\left(a x^{2}+2 a x h\right)+(b x+b h) \\
& =\left(a x^{2}+b x\right)+(2 a x+b) h
\end{aligned}
$$

so the derivative is $2 a x+b$.
(d) $i(x)=\frac{1}{b+x}$

Solution: $\frac{1}{b+x+h}-\frac{1}{b+x}=\frac{(b+x)-(b+x+h)}{(b+x+h)(b+x)}=-\frac{h}{(b+x+h)(b+x)} \sim-\frac{h}{(b+x)^{2}}$ so the derivative is $-\frac{1}{(b+x)^{2}}$.
Solution:

$$
\begin{aligned}
\frac{1}{b+x+h} & =\frac{1}{b+x+h}-\frac{1}{b+x}+\frac{1}{b+x} \\
& =\frac{1}{b+x}+\frac{(b+x)-(b+x+h)}{(b+x+h)(b+x)} \\
& =\frac{1}{b+x}-\frac{h}{(b+x+h)(b+x)} \\
& \approx \frac{1}{b+x}-\frac{1}{(b+x)^{2}} \cdot h
\end{aligned}
$$

so the derivative is $-\frac{1}{(b+x)^{2}}$.
(e) $j(x)=4 x^{4}+5 x$ (hint: use the known linear approximation to $2 x^{2}$)

Solution: We have $j(x)=\left(2 x^{2}\right)^{2}+5 x$. Now $2(x+h)^{2} \approx 2 x^{2}+4 x h$, so

$$
\begin{aligned}
f(x+h) & =\left(2(x+h)^{2}\right)^{2}+5(x+h) \\
& \approx\left(2 x^{2}+4 x h\right)^{2}+5(x+h) \\
& =4 x^{4}+16 x^{3} h+16 x^{2} h^{2}+5 x+5 h \\
& =\left(4 x^{4}+5 x\right)+\left(16 x^{3}+5\right) h+O\left(h^{2}\right) \\
& \approx\left(4 x^{4}+5 x\right)+\left(16 x^{3}+5\right) h
\end{aligned}
$$

so the derivative is $16 x^{3}+5$.

2. Arithmetic of derivatives

(2) Differentiate
(a) $f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2}$

Solution: This is a linear combination of power laws so $f^{\prime}(x)=6 \pi x^{\pi-1}+2 e x^{e-1}-\frac{7}{2} x^{5 / 2}$.
(b) (Final, 2016) $g(x)=x^{2} e^{x}$ (and then also $x^{a} e^{x}$)

Solution: Applying the product rule we get $\frac{d g}{d x}=\frac{d\left(x^{2}\right)}{d x} \cdot e^{x}+x^{2} \cdot \frac{d\left(e^{x}\right)}{d x}=\left(2 x+x^{2}\right) e^{x}=$ $x(x+2) e^{x}$, and in general

$$
\frac{d}{d x}\left(x^{a} e^{x}\right)=a x^{a-1} e^{x}+x^{a} e^{x}=x^{a-1}(x+a) e^{x}
$$

(c) (Final, 2016) $h(x)=\frac{x^{2}+3}{2 x-1}$

Solution: Applying the quotient rule the derivative is $\frac{2 x \cdot(2 x-1)-\left(x^{2}+3\right) \cdot 2}{(2 x-1)^{2}}=\frac{4 x^{2}-2 x-2 x^{2}-6}{(2 x-1)^{2}}=$ $2 \frac{x^{2}-x-3}{(2 x-1)^{2}}$.
(d) $\frac{x^{2}+A}{\sqrt{x}}$

Solution: We write the function as $x^{3 / 2}+A x^{-1 / 2}$ so its derivative is $\frac{3}{2} x^{1 / 2}-\frac{A}{2} x^{-3 / 2}$.
(3) Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for A.

Solution: $\quad f^{\prime}(x)=\frac{1 \cdot(\sqrt{x}+A)-x\left(\frac{1}{2} x^{-1 / 2}\right)}{(\sqrt{x}+A)^{2}}=\frac{\sqrt{x}+A-\frac{1}{2} \sqrt{x}}{(\sqrt{x}+A)^{2}}=\frac{\frac{1}{2} \sqrt{x}+A}{(\sqrt{x}+A)^{2}}$. Plugging in $x=4$ we have

$$
\frac{3}{16}=f^{\prime}(4)=\frac{1+A}{(2+A)^{2}}
$$

so we have

$$
3(2+A)^{2}=16(1+A)
$$

that is

$$
3 A^{2}+12 A+12=16+16 A
$$

that is

$$
3 A^{2}-4 A-4=0
$$

In fact this gives $A=-\frac{2}{3}, 2$.
(4) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$.
(a) What are the linear approximations to f and g at $x=1$? Use them to find the linear approximation to $f g$ at $x=1$.
Solution: We have

$$
\begin{aligned}
& f(x) \approx f(1)+f^{\prime}(1)(x-1)=1+3(x-1) \\
& g(x) \approx g(1)+g^{\prime}(1)(x-1)=2+4(x-1)
\end{aligned}
$$

multiplying them we have

$$
\begin{aligned}
(f g)(x) & \approx(1+3(x-1))(2+4(x-1)) \\
& =2+1 \cdot 4(x-1)+2 \cdot 3(x-1)+12(x-1)^{2} \\
& \approx 2+10(x-1)
\end{aligned}
$$

to first order.
(b) Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.

Solution: $\quad(f g)^{\prime}(1)=f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=3 \cdot 2+1 \cdot 4=10$.

$$
\left(\frac{f}{g}\right)^{\prime}(1)=\frac{f^{\prime}(1) g(1)-f(1) g^{\prime}(1)}{(g(1))^{2}}=\frac{3 \cdot 2-1 \cdot 4}{2^{2}}=\frac{1}{2}
$$

(5) Evaluate
(a) $(x \cdot x)^{\prime}$ and $\left(x^{\prime}\right) \cdot\left(x^{\prime}\right)$. What did we learn?

Solution: $(x \cdot x)^{\prime}=\left(x^{2}\right)^{\prime}=2 x$ while $\left(x^{\prime}\right) \cdot\left(x^{\prime}\right)=1 \cdot 1=1$ - the "rule" $(f g)^{\prime}=f^{\prime} g^{\prime}$ is wrong.
(b) $\left(\frac{x}{x}\right)^{\prime}$ and $\frac{\left(x^{\prime}\right)}{\left(x^{\prime}\right)}$. What did we learn?

Solution: $\left(\frac{x}{x}\right)^{\prime}=(1)^{\prime}=0$ while $\frac{\left(x^{\prime}\right)}{\left(x^{\prime}\right)}=\frac{1}{1}=1-$ the "rule" $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime}}{g^{\prime}}$ is wrong.
(6) The Lennart-Jones potential $V(r)=\epsilon\left(\left(\frac{R}{r}\right)^{12}-2\left(\frac{R}{r}\right)^{6}\right)$ models the electrostatic potential energy of a diatomic molecule. Here $r>0$ is the distance between the atoms and $\epsilon, R>0$ are constants.
(a) What are the asymptotics of $V(r)$ as $r \rightarrow 0$ and as $r \rightarrow \infty$?

Solution: For small $r, \frac{1}{r^{12}}$ blows up faster than $\frac{1}{r^{6}}$ so $V(r) \sim \epsilon\left(\frac{R}{r}\right)^{12}$ as $r \rightarrow 0$. For large r, $\frac{1}{r^{12}}$ decays faster than $\frac{1}{r^{6}}$ so $V(r) \sim-2 \epsilon\left(\frac{R}{r}\right)^{6}$ as $r \rightarrow \infty$.
(b) Sketch a plot of $V(r)$.

Solution:

(c) Find the derivative $\frac{d V}{d r}(r)=$

Solution: $V(r)=\epsilon R^{12} r^{-12}-2 \epsilon R^{6} r^{-6}$ so

$$
\begin{aligned}
V^{\prime}(r) & =\epsilon R^{12} \cdot\left(-12 r^{-13}\right)-2 \epsilon R^{6}\left(-6 r^{-7}\right) \\
& =-12 \epsilon R^{12} r^{-13}+12 \epsilon R^{6} r^{-7} \\
& =12 \epsilon R^{6} r^{-13}\left(r^{6}-R^{6}\right)
\end{aligned}
$$

(d) Where is $V(r)$ increasing? decreasing? Find its minimum location and value.

Solution: $\quad V^{\prime}(r)$ has the same sign as $r^{6}-R^{6}$, so V^{\prime} is negative when $r<R$ and is positive when $r>R$. We conclude that V is decreasing on $(0, R)$ and increasing on (R, ∞), and hence has a minimum at $r=R$, where $V(R)=\epsilon(1-2)=-\epsilon$. This makes ϵ the binding energy of the molecule.

