## Math 100C - WORKSHEET 3 <br> THE DERIVATIVE

## 1. Three views of the derivative

(1) Let $f(x)=x^{2}$, and let $a=2$. Then $(2,4)$ is a point on the graph of $y=f(x)$.
(a) Let $\left(x, x^{2}\right)$ be another point on the graph, close to $(2,4)$. What is the slope of the line connecting the two? What is the limit of the slopes as $x \rightarrow 2$ ?
(b) Let $h$ be a small quantity. What is the asymptotic behaviour of $f(2+h)$ as $h \rightarrow 0$ ? What about $f(2+h)-f(2)$ ?
(c) What is $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h}$ ?
(d) What is the equation of the line tangent to the graph of $y=f(x)$ at $(2,4)$ ?
(2) An analysis of market conditions indicate's your cousin's firm will generate a profit of $P(x)=$ $10 x(7-x)-3 x-5$ if you produce $x$ units of product. The firm is currently producing $x=2$ units per month. Would you advise your cousin to increase to decrease production?
2. Definition of the derivative

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ or $f(a+h) \approx f(a)+f^{\prime}(a) h$
(3) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.
(b) $f(x)=\frac{1}{x}$, any $a$.
(c) $f(x)=x^{3}-2 x$, any $a$ (you may use $(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}$ ).
(4) Express the limits as derivatives: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}, \lim _{x \rightarrow 0} \frac{\sin x}{x}$
(5) (Final, 2015, variant - gluing derivatives) Is the function

$$
f(x)= \begin{cases}x^{2} & x \leq 0 \\ x^{2} \cos \frac{1}{x} & x>0\end{cases}
$$

differentiable at $x=0$ ?

Fact. The derivative of $x^{n}$ with respect to $x$ is $n x^{n-1}$.

## 3. The tangent line

Definition. The line tangent to the graph $y=f(x)$ at $x=a$ is the line $y=f^{\prime}(a)(x-a)+f(a)$
(6) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.
(7) (Final 2015) The line $y=4 x+2$ is tangent at $x=1$ to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?
(8) Find the lines of slope 3 tangent the curve $y=x^{3}+4 x^{2}-8 x+3$.
(9) The line $y=5 x+B$ is tangent to the curve $y=x^{3}+2 x$. What is $B$ ?
4. Linear approximation

Definition. $f(a+h) \approx f(a)+f^{\prime}(a) h$
(10) Estimate
(a) $\sqrt{1.2}$
(b) (Final, 2015) $\sqrt{8}$
(c) $\left(\right.$ Final, 2016) $(26)^{1 / 3}$

