Math 100C – WORKSHEET 3 THE DERIVATIVE

1. Three views of the derivative

- (1) Let $f(x) = x^2$, and let a = 2. Then (2, 4) is a point on the graph of y = f(x).
 - (a) Let (x, x^2) be another point on the graph, close to (2, 4). What is the slope of the line connecting the two? What is the limit of the slopes as $x \to 2$?

(b) Let h be a small quantity. What is the asymptotic behaviour of f(2+h) as $h \to 0$? What about f(2+h) - f(2)?

(c) What is $\lim_{h\to 0} \frac{(2+h)^2 - 2^2}{h}$?

- (d) What is the equation of the line tangent to the graph of y = f(x) at (2, 4)?
- (2) An analysis of market conditions indicate's your cousin's firm will generate a profit of P(x) = 10x(7-x) 3x 5 if you produce x units of product. The firm is currently producing x = 2 units per month. Would you advise your cousin to increase to decrease production?

Date: 29/9/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

Definition. $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ or $f(a+h) \approx f(a) + f'(a)h$

(3) Find
$$f'(a)$$
 if
(a) $f(x) = x^2, a = 3.$

(b) $f(x) = \frac{1}{x}$, any *a*.

(c) $f(x) = x^3 - 2x$, any *a* (you may use $(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3$).

(4) Express the limits as derivatives: $\lim_{h\to 0} \frac{\cos(5+h)-\cos 5}{h}$, $\lim_{x\to 0} \frac{\sin x}{x}$

(5) (Final, 2015, variant – gluing derivatives) Is the function

$$f(x) = \begin{cases} x^2 & x \le 0\\ x^2 \cos \frac{1}{x} & x > 0 \end{cases}$$

differentiable at x = 0?

Fact. The derivative of x^n with respect to x is nx^{n-1} .

3. The tangent line

Definition. The line tangent to the graph y = f(x) at x = a is the line y = f'(a)(x - a) + f(a)

(6) (Final, 2015) Find the equation of the line tangent to the function $f(x) = \sqrt{x}$ at (4, 2).

(7) (Final 2015) The line y = 4x + 2 is tangent at x = 1 to which function: $x^3 + 2x^2 + 3x$, $x^2 + 3x + 2$, $2\sqrt{x+3} + 2$, $x^3 + x^2 - x$, $x^3 + x + 2$, none of the above?

(8) Find the lines of slope 3 tangent the curve $y = x^3 + 4x^2 - 8x + 3$.

(9) The line y = 5x + B is tangent to the curve $y = x^3 + 2x$. What is B?

4. LINEAR APPROXIMATION

Definition. $f(a+h) \approx f(a) + f'(a)h$

(10) Estimate (a) $\sqrt{1.2}$

(b) (Final, 2015) $\sqrt{8}$

(c) (Final, 2016) $(26)^{1/3}$