Math 100C - SOLUTIONS TO WORKSHEET 3 THE DERIVATIVE

1. Three views of the Derivative

(1) Let $f(x)=x^{2}$, and let $a=2$. Then $(2,4)$ is a point on the graph of $y=f(x)$.
(a) Let $\left(x, x^{2}\right)$ be another point on the graph, close to $(2,4)$. What is the slope of the line connecting the two? What is the limit of the slopes as $x \rightarrow 2$?
Solution: The slope of the line connecting two points is $\frac{\Delta y}{\Delta x}$, here $\frac{x^{2}-4}{x-2}=\frac{(x-2)(x+2)}{x-2}=x+2$, which tends to 4 as $x \rightarrow 2$.
(b) Let h be a small quantity. What is the asymptotic behaviour of $f(2+h)$ as $h \rightarrow 0$? What about $f(2+h)-f(2)$?
Solution: $\quad f(2+h)=(2+h)^{2}=4+4 h+h^{2} \sim 4=f(2)$ as $h \rightarrow 0$ but then $f(2+h)-f(2)=$ $4 h+h^{2} \sim 4 h$ as $h \rightarrow 0$.
(c) What is $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h}$?

Solution: $\frac{(2+h)^{2}-2^{2}}{h}=\frac{4 h+h^{2}}{h}=4+h \underset{h \rightarrow 0}{\longrightarrow} 4$
(d) What is the equation of the line tangent to the graph of $y=f(x)$ at $(2,4)$?

Solution: We need a line of slope 4 through the point $(2,4)$ so its equation is $y=4(x-2)+4$.
(2) An analysis of market conditions indicate's your cousin's firm will generate a profit of $P(x)=$ $10 x(7-x)-3 x-5$ if you produce x units of product. The firm is currently producing $x=2$ units per month. Would you advise your cousin to increase to decrease production?

Solution: We have $P(2)=10 \cdot 2 \cdot 5-3 \cdot 2-5=89$. If we marginally increase production by h units we have

$$
\begin{aligned}
P(2+h) & =10(2+h)(7-(2+h))-3(2+h)-5 \\
& =10(2+h)(5-h)-11-3 h \\
& =100+30 h-10 h^{2}-11-3 h \\
& =89+27 h-10 h^{2} \approx 89+27 h
\end{aligned}
$$

to first order in h. We conclude that increasing production by h units will increase profits by about $27 h$ - and in particular production should be increased.

Solution: Once we know about the derivative, we can write $P(x)=67 x-10 x^{2}-5$ so $P^{\prime}(x)=$ $67-20 x$ so $P^{\prime}(2)=27>0$ and the function is increasing about 0 .
2. Definition of the derivative

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ or $f(a+h) \approx f(a)+f^{\prime}(a) h$
(3) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.

Solution: $\quad \lim _{h \rightarrow 0} \frac{(3+h)^{2}-(3)^{2}}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0}(6+h)=6$.
Solution: $(3+h)^{2}=3+6 h+h^{2} \approx 3+6 h$ to second order so $f^{\prime}(3)=6$.
(b) $f(x)=\frac{1}{x}$, any a.

Solution: $\quad \lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{a-(a+h)}{a(a+h)}\right)=\lim _{h \rightarrow 0} \frac{-h}{h \cdot a(a+h)}=-\lim _{h \rightarrow 0} \frac{1}{a(a+h)}=$ $-\frac{1}{a^{2}}$.
Solution: $\quad \frac{1}{a+h}-\frac{1}{a}=\frac{a}{a(a+h)}-\frac{a+h}{a(a+h)}=-\frac{h}{a(a+h)} \sim-\frac{h}{a^{2}}$ so $f^{\prime}(a)=-\frac{1}{a^{2}}$.
Date: 29/9/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.
(c) $f(x)=x^{3}-2 x$, any a (you may use $(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}$).

Solution: We have

$$
\begin{aligned}
\frac{(a+h)^{3}-2(a+h)-a^{3}+2 a}{h} & =\frac{a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-2 a-2 h-a^{3}+2 a}{h} \\
& =\frac{3 a^{2} h+3 a h^{2}+h^{3}-2 h}{h} \\
& =3 a^{2}-2+3 a h+h^{2} \xrightarrow[h \rightarrow 0]{ } 3 a^{2}-2 .
\end{aligned}
$$

Solution: We have

$$
\begin{aligned}
(a+h)^{3}-2(a+h) & =a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-2 a-2 h \\
& =\left(a^{3}-2 a\right)+\left(3 a^{2}-2\right) h+3 a h^{2}+h^{3} \\
& \approx\left(a^{3}-2 a\right)+\left(3 a^{2}-2\right) h
\end{aligned}
$$

so the derivative is $3 a^{2}-2$.
(4) Express the limits as derivatives: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}, \lim _{x \rightarrow 0} \frac{\sin x}{x}$

Solution: These are the derivative of $f(x)=\cos x$ at the point $a=5$ and of $g(x)=\sin x$ at the point $a=0$.
(5) (Final, 2015, variant - gluing derivatives) Is the function

$$
f(x)= \begin{cases}x^{2} & x \leq 0 \\ x^{2} \cos \frac{1}{x} & x>0\end{cases}
$$

differentiable at $x=0$?
Solution: We have $f(0)=0$, so we'd have $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$ provided the limit exists, and since we have different expresions for $f(x)$ on both sides of 0 we compute the limit as two one-sided limits. On the left we have

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{-}} \frac{x^{2}}{x}=\lim _{x \rightarrow 0^{-}} x=0
$$

Alternatively, we could recognize the limit as giving the derivative of $f(x)=x^{2}$ at $x=0$. Using differentiation rules (to be covered later in the course) we know that $\left[\frac{d}{d x} x^{2}\right]_{x=0}=[2 x]_{x=0}=0$ and it would again follow that $\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=0$.
On the right we have

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{x^{2} \cos \frac{1}{x}}{x}=\lim _{x \rightarrow 0^{+}} x \cos \left(\frac{1}{x}\right)=0
$$

since $x \rightarrow 0$ while $\cos \left(\frac{1}{x}\right)$ is bounded. Thus the function is differentiable and its derivative is zero.

3. The tangent line

(6) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.

Solution: $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, so the slope of the line is $f^{\prime}(4)=\frac{1}{4}$, and the equation for the line line itself is $y-2=\frac{1}{4}(x-4)$ or $y=\frac{1}{4}(x-4)+2$ or $y=\frac{1}{4} x+1$.
(7) (Final 2015) The line $y=4 x+2$ is tangent at $x=1$ to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?

Solution: The line has slope 4 and meets the curve at $(1,6)$. The last two functions don't evaluate to 6 at 1.We differentiate the first three.

$$
\begin{aligned}
\left.\frac{d}{d x}\right|_{x=1}\left(x^{3}+2 x^{2}+3 x\right) & =\left.\left(3 x^{2}+4 x+3\right)\right|_{x=1}=10 \\
\left.\frac{d}{d x}\right|_{x=1}\left(x^{2}+3 x+2\right) & =\left.(2 x+3)\right|_{x=1}=5 \\
\left.\frac{d}{d x}\right|_{x=1}(2 \sqrt{x+3}+2) & =\left.\left(\frac{2}{2 \sqrt{x+3}}\right)\right|_{x=1}=\frac{1}{2}
\end{aligned}
$$

The answer is "none of the above".
(8) Find the lines of slope 3 tangent the curve $y=x^{3}+4 x^{2}-8 x+3$.

Solution: $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+8 x-8$, so the line tangent at (x, y) has slope 3 iff $3 x^{2}+8 x-8=3$, that is iff $3\left(x^{2}-1\right)+8(x-1)=0$. We can factor this as $(x-1)(3 x+11)=0$ so the x-coordinates of the points of tangency are $1,-\frac{11}{3}$ and the lines are:

$$
\begin{aligned}
& y=3(x-1) \\
& y=3\left(x+\frac{11}{3}\right)+\left(\left(\frac{11}{3}\right)^{3}+4\left(\frac{11}{3}\right)^{2}-8\left(\frac{11}{3}\right)+3\right)
\end{aligned}
$$

(9) The line $y=5 x+B$ is tangent to the curve $y=x^{3}+2 x$. What is B ?

Solution: At the point (x, y) the curve has slope $\frac{d y}{d x}=3 x^{2}+2$, so the curve has slope 5 at the points where $x= \pm 1$, that is the points $(-1,-3)$ and $(1,3)$. The line needs to meet the curve at the point, so there are two solutions:

$$
\begin{array}{ll}
y=5 x+2 & (\text { tangent at }(-1,-3)) \\
y=5 x-2 & (\text { tangent at }(1,3))
\end{array}
$$

4. Linear approximation

Definition. $f(a+h) \approx f(a)+f^{\prime}(a) h$
(10) Estimate
(a) $\sqrt{1.2}$

Solution: Let $f(x)=\sqrt{x}$ so that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Then $f(1)=1$ and $f^{\prime}(1)=\frac{1}{2}$ so $f(1.2) \approx$ $f(1)+f^{\prime}(1) \cdot 0.2=1+\frac{1}{2} \cdot 0.2=1.1$.
Better: $f(1.21)=1.1$ and $f^{\prime}(1.21)=\frac{1}{2.2}$ so $f(1.2)=f(1.21-0.01) \approx 1.1-0.01 \cdot \frac{1}{2.2} \approx 1.09545$.
(b) (Final, 2015) $\sqrt{8}$

Solution: Using the same f we have $f(9-1) \approx f(9)+f^{\prime}(9) \cdot(-1)=3-\frac{1}{6}=2 \frac{5}{6}$.
(c) (Final, 2016) $(26)^{1 / 3}$

Solution: Let $f(x)=x^{1 / 3}$ so that $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. Then $f(27)=3$ and $f^{\prime}(27)=\frac{1}{3 \cdot 27^{2 / 3}}=\frac{1}{27}$ so

$$
f(26)=f(27-1) \approx f(27)+(-1) \cdot f^{\prime}(27)=3-\frac{1}{27}=2 \frac{26}{27}
$$

