Math 100C - SOLUTIONS TO WORKSHEET 2
 LIMITS AND ASYMPTOTES

(1) Review of asymptotics: analyze the expression $\frac{e^{x}+A \sin x}{e^{x}-x^{2}}$ as $x \rightarrow \infty, x \rightarrow 0, x \rightarrow-\infty$.

Solution: This is a ratio. As $x \rightarrow \infty e^{x}$ grows rapidly while $A \sin x$ is bounded, so $e^{x}+A \sin x \sim$ e^{x}, while in the denominator e^{x} dominates x^{2} so $e^{x}-x^{2} \sim e^{x}$ and we get $\frac{e^{x}+A \sin x}{e^{x}-x^{2}} \sim 1$. As $x \rightarrow 0$ $e^{x}+A \sin x$ is close to $1+0=1$ and $e^{x}-x^{2}$ is close to $1-0=1$ so $\frac{e^{x}+A \sin x}{e^{x}-x^{2}} \sim 1$ in that regime. Finally as $x \rightarrow-\infty e^{x}$ decays rapidly, so $e^{x}-x^{2} \sim-x^{2}$ which is large. But $A \sin x$ oscillates so there is no clear asymptotic.

1. Limits

(2) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.
(a) $\lim _{x \rightarrow 5}\left(x^{3}-x\right)$

Solution: When the function is defined by expression the limit can be obtained by plugging in. $\lim _{x \rightarrow 5}\left(x^{3}-x\right)=125-5=120$.
(b) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 3 & x=1 \\ 2-x^{2} & x>1\end{array}\right.$.

Solution: $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(2-x^{2}\right)=2-1^{2}=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{x}=$ $\sqrt{1}=1$ so

$$
\lim _{x \rightarrow 1} f(x)=1
$$

(c) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 1 & x=1 \\ 4-x^{2} & x>1\end{array}\right.$.

Solution: $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(4-x^{2}\right)=4-1^{2}=3$ and $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{x}=$ $\sqrt{1}=1$ so the limit does not exist (but the one-sided limits do).
(3) Let $f(x)=\frac{x-3}{x^{2}+x-12}$.
(a) (Final 2014) What is $\lim _{x \rightarrow 3} f(x)$?

Solution: $f(x)=\frac{x-3}{(x-3)(x+4)}=\frac{1}{x+4}$ so $\lim _{x \rightarrow 3} f(x)=\frac{1}{3+4}=\frac{1}{7}$.
(b) What about $\lim _{x \rightarrow-4} f(x)$?

Solution: The limit does not exist: if x is very close to -4 then $x+4$ is very small and $\frac{1}{x+4}$ is very large. That said, when $x>-4$ we have $\frac{1}{x+4}>0$ and when $x<-4$ we have $\frac{1}{x+4}<0$ so (in the extended sense)

$$
\begin{aligned}
\lim _{x \rightarrow-4^{+}} \frac{1}{x+4} & =+\infty \\
\lim _{x \rightarrow-4^{-}} \frac{1}{x+4} & =-\infty
\end{aligned}
$$

More on this in the next lecture.
(4) Evaluate
(a) $\lim _{x \rightarrow \infty} \frac{e^{x}+A \sin x}{e^{x}-x^{2}}$

Solution: By problem 1 this is 1 .
(b) $\lim _{x \rightarrow 0} \frac{e^{x}+A \sin x}{e^{x}-x^{2}}$

Solution: By problem 1 this is 1 also.
(c) $\lim _{x \rightarrow-\infty} \frac{e^{x}+A \sin x}{e^{x}-x^{2}}$

Solution: By problem 1 the numerator is bounded while the denominator grows like x^{2}, so the whole expression tends to 0 .
(5) Evaluate
(a) $\lim _{x \rightarrow 2} \frac{x+1}{4 x^{2}-1}$

Solution: The expression is well-behaved at $x=2$ so $\lim _{x \rightarrow 2} \frac{x+1}{4 x^{2}-1}=\frac{2+1}{4 \cdot 2^{2}-1}=\frac{3}{15}=\frac{1}{5}$.
(b) (Final, 2014) $\lim _{x \rightarrow-3^{+}} \frac{x+2}{x+3}$.

Solution: As $x \rightarrow-3$ the numerator is close to -1 and while the denominator goes to 0 so the whole expression blows up: we have $\frac{x+2}{x+3} \sim \frac{-1}{x+3}$. Now when $x>-3$ we have $x+3>0$ so
the whole expression is negative and $\lim _{x \rightarrow-3^{+}} \frac{x+2}{x+3}=\lim _{x \rightarrow-3^{+}}-\frac{1}{x+3}=-\infty$.
(c) $\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}$

Solution: $\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}=\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{(x-1)(x+2)}=\lim _{x \rightarrow 1} \frac{e^{x}}{x+2}=\frac{e^{1}}{1+2}=\frac{e}{3}$.
(d) $\lim _{x \rightarrow-2^{-}} \frac{e^{x}(x-1)}{x^{2}+x-2}$

Solution: As $x \rightarrow-2$ we have $\frac{e^{x}(x-1)}{x^{2}+x-2}=\frac{e^{x}(x-1)}{(x-1)(x+2)}=\frac{e^{x}}{x+2} \sim \frac{e^{-2}}{x+2}$ and the expression blows up (we have a vertical asymptote). If $x<-2$ then $x+2<0$ and thus

$$
\lim _{x \rightarrow-2^{-}} \frac{e^{x}(x-1)}{x^{2}+x-2}=-\infty
$$

(e) $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}$

Solution: The function blows up at both sides, and remains positive on both sides. Therefore

$$
\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=\infty
$$

(f) $\lim _{x \rightarrow 4} \frac{\sin x}{|x-4|}$

Solution: $|x-4| \rightarrow 0$ as $x \rightarrow 4$ while $\sin x \xrightarrow[x \rightarrow 4]{ } \sin 4 \neq 0$, so the function blows up there.
Since $|x-2|$ is positive and $\sin 4$ is negative $(\pi<4<2 \pi)$ we have

$$
\lim _{x \rightarrow 4} \frac{\sin x}{|x-4|}=-\infty
$$

(g) $\lim _{x \rightarrow \frac{\pi}{2}+} \tan x, \lim _{x \rightarrow \frac{\pi}{2}-} \tan x$.

Solution: We have $\tan x=\frac{\sin x}{\cos x}$. Now for x close to $\frac{\pi}{2}, \sin x$ is close to $\sin \frac{\pi}{2}=1$, so $\sin x$ is positive. On the other hand $\lim _{x \rightarrow \frac{\pi}{2}} \cos x=\cos \frac{\pi}{2}=0$ so $\tan x$ blows up there. Since $\cos x$ is decreasing on $[0, \pi]$ it is positive if $x<\frac{\pi}{2}$ and negative if $x>\frac{\pi}{2}$, so:

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}+} \tan x=-\infty \\
& \lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan x=+\infty
\end{aligned}
$$

2. Limits at infinity

(6) Evaluate
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}$

Solution: As $x \rightarrow \infty$ we have $\frac{x^{2}+1}{x-3} \sim \frac{x^{2}}{x} \sim x$ so $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}=\infty$.
(b) (Final, 2015) $\lim _{x \rightarrow-\infty} \frac{x+1}{x^{2}+2 x-8}$

Solution: As $x \rightarrow-\infty$ we have $\frac{x+1}{x^{2}+2 x-8} \sim \frac{x}{x^{2}} \sim \frac{1}{x}$ so $\lim _{x \rightarrow-\infty} \frac{x+1}{x^{2}+2 x-8}=0$.
(c) (Quiz, 2015) $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}+x}-2 x}$

Solution: As $x \rightarrow-\infty$ since $\sqrt{x^{2}}=|x|=-x$ we have

$$
\begin{aligned}
\frac{3 x}{\sqrt{4 x^{2}+x}-2 x} & \sim \frac{3 x}{\sqrt{4 x^{2}}-2 x} \sim \frac{3 x}{2|x|-2 x} \\
& \sim \frac{3 x}{2(-x)-2 x} \sim \frac{3 x}{-4 x}=-\frac{3}{4}
\end{aligned}
$$

and hence $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}+x}-2 x}=-\frac{3}{4}$.

