Math 100C - WORKSHEET 1 EXPRESSIONS AND ASYMPTOTICS

1. Asymptotics: simple expressions

(1) Classify the following functions into power laws / power functions and exponentials: $x^{3}, \pi x^{102}, e^{2 x}$, $c \sqrt{x},-\frac{8}{x}, 7^{x}, 8 \cdot 2^{x},-\frac{1}{\sqrt{3}} \cdot \frac{1}{2^{x}}, \frac{9}{x^{7 / 2}}, x^{e}, \pi^{x}, \frac{A}{x^{b}}$.
(2) How does the each expression behave when x is large? small? what is x is large but negative? Sketch a plot
(a) $7+x^{2}+x^{4}$
(b) $x^{3}-x^{5}$
(c) $e^{x}-x^{4}$
(d) Wages in some country grow at 2% a year (so the wage of a typical worker has the form $A \cdot(1.02)^{t}$ where t is measured in years and A is the wage today). The cost of healthcare grows at 4% a year (so the healthcare costs of a typical worker have the form $B \cdot(1.04)^{t}$ where B is the cost today). Suppose that today's workers can afford their healthcare (A is much bigger than B). Will that be always true? Why or why not?
(e) Three strains of a contagion are spreading in a population, spreading at rates 1.05, 1.1, and 0.98 respectively. The total number of cases at time t behaves like

$$
A \cdot 1.05^{t}+B \cdot 1.1^{t}+C \cdot 0.98^{t}
$$

(A, B, C are constants). Which strain dominates eventually? What would the number of infected people look like?

[^0]
2. Asymptotics of Complicated expresisons

(3) Construct parse trees for the following expressions:
(a) $e^{|x-5|^{3}}$
(b) $\frac{e^{x}+A \sin x}{e^{x}-x^{2}}$
(c) $\frac{1+x}{1+2 x-x^{2}}$
(d) $\left(\frac{t+\pi}{t-\pi}\right) \sin \left(\frac{t+\pi}{2}\right)$
(4) For each of the functions in (a),(b),(c),(d) use the parse tree to determine its asymptotics as $x \rightarrow 0$ and as $x \rightarrow \infty$.
(a) $\left(\frac{t+\pi}{t-\pi}\right) \sin \left(\frac{t+\pi}{2}\right)$

[^0]: Date: $14 / 9 / 2022$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

