Math 100C - SOLUTIONS TO WORKSHEET 1 EXPRESSIONS AND ASYMPTOTICS

1. Asymptotics: simple expressions

(1) Classify the following functions into power laws / power functions and exponentials: x^3 , πx^{102} , e^{2x} ,

(1) Classify the colorwing functions into power junctions and exponentials: x^{-} , $\pi^{-}x^{-}$, $c\sqrt{x}$, $-\frac{8}{x}$, 7^{x} , $8 \cdot 2^{x}$, $-\frac{1}{\sqrt{3}} \cdot \frac{1}{2^{x}}$, $\frac{9}{x^{7/2}}$, x^{e} , π^{x} , $\frac{4}{x^{b}}$. **Solution:** Power laws: x^{3} , πx^{102} , $c\sqrt{x} = cx^{-1/2}$, $-\frac{8}{x} = -8x^{-1}$, $\frac{9}{x^{7/2}} = 9x^{-7/2}$, x^{e} , $\frac{4}{x^{b}} = Ax^{-b}$ Exponentials: $e^{2x} = (e^{2})^{x}$, 7^{x} , $8 \cdot 2^{x}$, $-\frac{1}{\sqrt{3}} \cdot \frac{1}{2^{x}} = -\frac{1}{\sqrt{3}}2^{-x}$, π^{x} . (2) How does the each expression behave when x is large? small? what is x is large but negative? Sketch

- a plot
 - (a) $7 + x^2 + x^4$

Solution: When x is large, $7 + x^2 + x^4 \sim x^4$ (x^4 dominates both x^2 and the constant 7) while when x is small, $7 + x^2 + x^4 \sim 7$.

(b) $x^3 - x^5$

Solution: When x is very large, x^5 dominates x^3 so $x^3 - x^5 \sim -x^5$ (which is negative for x positive, positive for x negative!). When x is very small (close to zero), x^3 dominates (is bigger than x^5 though both are very small) and $x^3 - x^5 \sim x^3$.

(c) $e^x - x^4$

Solution: When x is very large, e^x dominates x^4 so $e^x - x^4 \sim e^x$. Near 0 we have $e^x \sim 1$ while x^4 is small, so $e^x - x^4 \sim 1$. As when x is large but negative e^x decays, so $e^x - x^4 \sim -x^4$.

(d) Wages in some country grow at 2% a year (so the wage of a typical worker has the form $A \cdot (1.02)^t$ where t is measured in years and A is the wage today). The cost of healthcare grows at 4% a year (so the healthcare costs of a typical worker have the form $B \cdot (1.04)^t$ where B is the cost today). Suppose that today's workers can afford their healthcare (A is much bigger than B). Will that be always true? Why or why not?

Solution: Asymptotically $(1.04)^t$ will dominate 1.02^t for large t, so eventually our assumptions must break down.

(e) Three strains of a contagion are spreading in a population, spreading at rates 1.05, 1.1, and 0.98 respectively. The total number of cases at time t behaves like

$$A \cdot 1.05^t + B \cdot 1.1^t + C \cdot 0.98^t$$

(A, B, C are constants). Which strain dominates eventually? What would the number of infected people look like?

Solution: When t is large, $(0.98)^t$ is actually decaying so this strain will disappear. On the other hand since 1.1 > 1.05 over time 1.1^t will be much bigger than

2. Asymptotics of complicated expresisons

(3) Construct parse trees for the following expressions:

(a) $e^{|x-5|^3}$

Solution: This is the exponential, of the cube, of the absolute value, of x - 5.

(b) $\frac{e^x + A \sin x}{e^x - r^2}$

Solution: This is the ratio of (the sum of e^x and the product of A and $\sin x$) and (the difference of e^x and x^2).

(c) $\frac{1+x}{1+2x-x^2}$ **Solution:** This is the ratio of (the sum of 1 and x) and (the sum of 1, 2x, and $-x^2$).

Date: 14/9/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(d) $\left(\frac{t+\pi}{t-\pi}\right)\sin\left(\frac{t+\pi}{2}\right)$

Solution: This is the product of (the ratio of the sum $t + \pi$ and the difference $t - \pi$) and the sign of the product of $\frac{1}{2}$ and the sum of t, π .

(4) For each of the functions in (a),(b),(c),(d) use the parse tree to determine its asymptotics as $x \to 0$ and as $x \to \infty$.

Solution: (a) For x close to 0, $x - 5 \sim -5$ so $|x - 5| \sim 5$ so $|x - 5|^3 \sim 125$ so $e^{|x - 5|^3} \sim e^{125}$. For x very large $x - 5 \sim x$ and since x is positive $|x - 5| \sim |x| = x$ so $|x - 5|^3 \sim x^3$. $e^{|x - 5|^3}$ therefore grows roughly like e^{x^3} (in truth e^{x^3} is actually much bigger than $e^{(x - 5)^3}$ – the ratio is on the scale of e^{15x^2} – but our expression captures the gist of the growth pattern).

Solution: (b) For x near 0 we have $e^x \sim e^0 = 1$ and $\sin x \to 0$ (we'll later learn that $\sin x \sim x$ near 0) so $e^x + A \sin x \sim 1$ near 0. Similarly $x^2 \sim 0$ so $e^x - x^2 \sim 1$ and we have $\frac{e^x + A \sin x}{e^x - x^2} \sim \frac{1}{1} = 1$. For large x we have $|\sin x| \leq 1$ so $A \sin x$ is much smaller than e^x and $e^x + A \sin x \sim e^x$. Similarly e^x dominates any polynomial including x^2 and we have $e^x - x^2 \sim e^x$. Thus at infinity $\frac{e^x + A \sin x}{e^x - x^2} \sim \frac{e^x}{e^x} = 1$.

 $e^{x} - 1$. **Solution:** (c) As $x \to 0$ x, x^2 are negligible next to the 1 so $\frac{1+x}{1+2x-x^2} \sim \frac{1}{1} = 1$. As $x \to \infty x$ dominates 1 so $x + 1 \sim x$ and x^2 dominates x, 1 so $1 + 2x - x^2 \sim -x^2$. Thus $\frac{1+x}{1+2x-x^2} \sim \frac{x}{-x^2} = -\frac{1}{x}$ - in other words the whole expression decays roughly like $\frac{1}{x}$.

(a) $\left(\frac{t+\pi}{t-\pi}\right)\sin\left(\frac{t+\pi}{2}\right)$

Solution: (d) As $t \to 0$ $\frac{t+\pi}{2} \sim \frac{\pi}{2}$ and the $\sin \frac{\pi}{2} = 1$. Also π dominates t so $\frac{t+\pi}{t-\pi} \sim \frac{\pi}{-\pi} = -1$ thus $\left(\frac{t+\pi}{t-\pi}\right) \sin\left(\frac{t+\pi}{2}\right) \sim -1 \cdot 1 = -1$. As $t \to \infty t$ dominates π so $\frac{t+\pi}{t-\pi} \sim \frac{t}{t} = 1$ but $\sin\left(\frac{t+\pi}{2}\right)$ keeps oscillating, so there is no simple asymptotic.