Math 100C - SOLUTIONS TO WORKSHEET 1 EXPRESSIONS AND ASYMPTOTICS

1. Asymptotics: Simple expressions

(1) Classify the following functions into power laws / power functions and exponentials: $x^{3}, \pi x^{102}, e^{2 x}$, $c \sqrt{x},-\frac{8}{x}, 7^{x}, 8 \cdot 2^{x},-\frac{1}{\sqrt{3}} \cdot \frac{1}{2^{x}}, \frac{9}{x^{7 / 2}}, x^{e}, \pi^{x}, \frac{A}{x^{b}}$.

Solution: Power laws: $x^{3}, \pi x^{102}, c \sqrt{x}=c x^{-1 / 2},-\frac{8}{x}=-8 x^{-1}, \frac{9}{x^{7 / 2}}=9 x^{-7 / 2}, x^{e}, \frac{A}{x^{b}}=A x^{-b}$ Exponentials: $e^{2 x}=\left(e^{2}\right)^{x}, 7^{x}, 8 \cdot 2^{x},-\frac{1}{\sqrt{3}} \cdot \frac{1}{2^{x}}=-\frac{1}{\sqrt{3}} 2^{-x}, \pi^{x}$.
(2) How does the each expression behave when x is large? small? what is x is large but negative? Sketch a plot
(a) $7+x^{2}+x^{4}$

Solution: When x is large, $7+x^{2}+x^{4} \sim x^{4}\left(x^{4}\right.$ dominates both x^{2} and the constant 7$)$ while when x is small, $7+x^{2}+x^{4} \sim 7$.
(b) $x^{3}-x^{5}$

Solution: When x is very large, x^{5} dominates x^{3} so $x^{3}-x^{5} \sim-x^{5}$ (which is negative for x positive, positive for x negative!). When x is very small (close to zero), x^{3} dominates (is bigger than x^{5} though both are very small) and $x^{3}-x^{5} \sim x^{3}$.
(c) $e^{x}-x^{4}$

Solution: When x is very large, e^{x} dominates x^{4} so $e^{x}-x^{4} \sim e^{x}$. Near 0 we have $e^{x} \sim 1$ while x^{4} is small, so $e^{x}-x^{4} \sim 1$. As when x is large but negative e^{x} decays, so $e^{x}-x^{4} \sim-x^{4}$.
(d) Wages in some country grow at 2% a year (so the wage of a typical worker has the form $A \cdot(1.02)^{t}$ where t is measured in years and A is the wage today). The cost of healthcare grows at 4% a year (so the healthcare costs of a typical worker have the form $B \cdot(1.04)^{t}$ where B is the cost today). Suppose that today's workers can afford their healthcare (A is much bigger than B). Will that be always true? Why or why not?
Solution: Asymptotically (1.04) ${ }^{t}$ will dominate 1.02^{t} for large t, so eventually our assumptions must break down.
(e) Three strains of a contagion are spreading in a population, spreading at rates 1.05, 1.1, and 0.98 respectively. The total number of cases at time t behaves like

$$
A \cdot 1.05^{t}+B \cdot 1.1^{t}+C \cdot 0.98^{t}
$$

(A, B, C are constants). Which strain dominates eventually? What would the number of infected people look like?
Solution: When t is large, $(0.98)^{t}$ is actually decaying so this strain will disappear. On the other hand since $1.1>1.05$ over time 1.1^{t} will be much bigger than

2. Asymptotics of COMPLICATED EXPRESISONS

(3) Construct parse trees for the following expressions:
(a) $e^{|x-5|^{3}}$

Solution: This is the exponential, of the cube, of the absolute value, of $x-5$.
(b) $\frac{e^{x}+A \sin x}{e^{x}-x^{2}}$

Solution: This is the ratio of (the sum of e^{x} and the product of A and $\sin x$) and (the difference of e^{x} and x^{2}).
(c) $\frac{1+x}{1+2 x-x^{2}}$

Solution: This is the ratio of (the sum of 1 and x) and (the sum of $1,2 x$, and $-x^{2}$).
(d) $\left(\frac{t+\pi}{t-\pi}\right) \sin \left(\frac{t+\pi}{2}\right)$

Solution: This is the product of (the ratio of the sum $t+\pi$ and the difference $t-\pi$) and the sign of the product of $\frac{1}{2}$ and the sum of t, π.
(4) For each of the functions in (a),(b),(c),(d) use the parse tree to determine its asymptotics as $x \rightarrow 0$ and as $x \rightarrow \infty$.

Solution: (a) For x close to $0, x-5 \sim-5$ so $|x-5| \sim 5$ so $|x-5|^{3} \sim 125$ so $e^{|x-5|^{3}} \sim e^{125}$. For x very large $x-5 \sim x$ and since x is positive $|x-5| \sim|x|=x$ so $|x-5|^{3} \sim x^{3}$. $e^{|x-5|^{3}}$ therefore grows roughly like $e^{x^{3}}$ (in truth $e^{x^{3}}$ is actually much bigger than $e^{(x-5)^{3}}$ - the ratio is on the scale of $e^{15 x^{2}}$ - but our expression captures the gist of the growth pattern).

Solution: (b) For x near 0 we have $e^{x} \sim e^{0}=1$ and $\sin x \rightarrow 0$ (we'll later learn that $\sin x \sim x$ near 0) so $e^{x}+A \sin x \sim 1$ near 0 . Similarly $x^{2} \sim 0$ so $e^{x}-x^{2} \sim 1$ and we have $\frac{e^{x}+A \sin x}{e^{x}-x^{2}} \sim \frac{1}{1}=1$. For large x we have $|\sin x| \leq 1$ so $A \sin x$ is much smaller than e^{x} and $e^{x}+A \sin x \sim e^{x}$. Simliarly e^{x} dominates any polynomial including x^{2} and we have $e^{x}-x^{2} \sim e^{x}$. Thus at infinity $\frac{e^{x}+A \sin x}{e^{x}-x^{2}} \sim$ $\frac{e^{x}}{e^{x}}=1$.

Solution: (c) As $x \rightarrow 0 x, x^{2}$ are negligible next to the 1 so $\frac{1+x}{1+2 x-x^{2}} \sim \frac{1}{1}=1$. As $x \rightarrow \infty x$ dominates 1 so $x+1 \sim x$ and x^{2} dominates $x, 1$ so $1+2 x-x^{2} \sim-x^{2}$. Thus $\frac{1+x}{1+2 x-x^{2}} \sim \frac{x}{-x^{2}}=-\frac{1}{x}$ - in other words the whole expression decays roughly like $\frac{1}{x}$.
(a) $\left(\frac{t+\pi}{t-\pi}\right) \sin \left(\frac{t+\pi}{2}\right)$

Solution: (d) As $t \rightarrow 0 \frac{t+\pi}{2} \sim \frac{\pi}{2}$ and the $\sin \frac{\pi}{2}=1$. Also π dominates t so $\frac{t+\pi}{t-\pi} \sim \frac{\pi}{-\pi}=-1$ thus $\left(\frac{t+\pi}{t-\pi}\right) \sin \left(\frac{t+\pi}{2}\right) \sim-1 \cdot 1=-1$. As $t \rightarrow \infty t$ dominates π so $\frac{t+\pi}{t-\pi} \sim \frac{t}{t}=1$ but $\sin \left(\frac{t+\pi}{2}\right)$ keeps oscillating, so there is no simple aysmptotic.

