Lior Silberman's Math 223: Problem Set 12 (due 14/4/2021)

Practice problems

Section 6.2

M1. Check that the eigenvectors of the matrix $\begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ from PS10 are orthogonal.

For submission

1. (a) Let $\{x_i\}_{i=1}^n \subset \mathbb{R}$ be *n* real numbers. Applying the CS inequality to the vectors (x_1, \ldots, x_n) and

(1,...,1), show that $\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{2} \leq \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}$. RMK The quantities $\frac{1}{n}\sum_{i=1}^{n}x_{i}, \sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} - \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)^{2}}$ are called respectively the *expectation* and standard deviation of the random variable that takes the values x_i with equal probability $\frac{1}{n}$.

- (**b) Let $\{x_i\}_{i=1}^n \subset \mathbb{R}$ be positive. The Arithmetic Mean of these numbers is the number $AM = \frac{1}{n}\sum_{i=1}^n x_i$. The Harmonic Mean is the number $\frac{1}{\frac{1}{n}\sum_{i=1}^n \frac{1}{x_i}} = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}$. Show the inequality of the means HM \leq AM (with equality iff all the x_i are equal) by applying the CS inequality to suitable vectors.
- 2. Let $A \in M_n(\mathbb{C})$ be diagonable. Show that there exists $B \in M_n(\mathbb{C})$ such that $B^2 = A$.
- 3. Let $C_{c}^{\infty}(\mathbb{R})$ denote the set of functions on \mathbb{R} that are infinitely differentiable and have bounded sup*port*: if $f \in C_c^{\infty}(\mathbb{R})$ then there is some interval [-L, L] such that f = 0 outside it. Let $D: C_c^{\infty}(\mathbb{R}) \to C_c^{\infty}(\mathbb{R})$ $C_{\rm c}^{\infty}(\mathbb{R})$ be the differentiation operator. Equipe $C_{\rm c}^{\infty}(\mathbb{R})$ with the inner product $\langle f,g\rangle = \int_{-\infty}^{+\infty} \bar{f}(x)g(x)dx$ (the integral converges since by hypothesis the functions are zero outside some finite interval). Show that $\langle f, Dg \rangle = \langle -Df, g \rangle$ (hint: this is a well-known formula).

The Quantum Harmonic Oscillator, II

Let $H = -D^2 + M_{x^2}$ act on $V = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x] \right\}$ as in PS10. Also let $V_{\mathbb{C}} = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{C}[x] \right\}$. Equip these spaces with the inner product $\langle f,g \rangle = \int_{-\infty}^{+\infty} \bar{f}g dx$.

SUPP (This problem is not for submission)

- (a) Let $f,g \in V_{\mathbb{C}}$. Show that the integral $\int_{-\infty}^{+\infty} \bar{f}gdx$ converges absolutely if $f,g \in V_{\mathbb{C}}$ and defines an inner product there.
- (b) Show that $\hat{p} = -iD$ is a symmetric operator on $V_{\mathbb{C}}$ in that $\langle f, \hat{p}g \rangle = \langle \hat{p}f, g \rangle$ (this notation comes from physics).
- (c) Show that $\hat{x} = M_x$ is a symmetric operator on $V_{\mathbb{C}}$ in that $\langle f, \hat{x}g \rangle = \langle \hat{x}f, g \rangle$.
- 4*. By the supplementary problem $\langle \cdot, \cdot \rangle$ really is an inner product on $V_{\mathbb{C}}$.
 - (a) Show (either directly or using the results of the supplementary problem) that $\langle f, Hg \rangle = \langle Hf, g \rangle$ for all $f, g \in V_{\mathbb{C}}$.

DEF In PS10 we showed that $H(V_n) \subset V_n$ where $V_n = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}^{< n}[x] \right\}$. Let U_n be the orthogonal complement of V_n in V_{n+1} .

- (b) Show that U_n is one-dimensional and is spanned by a function $f_n(x) = h_n(x)e^{-x^2/2}$ where $h_n \in$ $\mathbb{R}[x]$ has degree exactly *n*.
- (c) Use (a) to show that Hf_n is also orthogonal to V_n and conclude that f_n is an eigenfunction of H.
- (d) Writing $H\left(h_n e^{-x^2/2}\right)$ in the from $p e^{-x^2/2}$ for a polynomial *p*, and examining the coefficient of x^n in p, show that $Hf_n = (2n+1)f_n$.
- (**e) Show that the h_n are (up to normalization) exactly the Hermite polynomials of PS11.

Extra credit

- P1. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For $\underline{u} \in V$ set $\varphi_{\underline{u}}(\underline{v}) = \langle \underline{u}, \underline{v} \rangle$. That $\varphi_{\underline{u}} \in V^*$ follows from the definition of the inner product.
 - (a) Show that the map $\Phi: V \to V^*$ given by $\phi(\underline{u}) = \varphi_{\underline{u}}$ (warning: this is a map valued in linear maps!) is anti-linear, in that $\varphi_{c\underline{u}+\underline{u}'} = \overline{c}\varphi_{\underline{u}} + \varphi_{\underline{u}'}$.
 - (**b) Show that Φ is injective.
 - *Hint:* If $\underline{u} \neq \underline{0}$ show that $\varphi_{\underline{u}}$ is non-zero, and then use additivity of Φ to get injectivity from that.
 - (c) We proved in class that if dim $V = n < \infty$ then Φ is surjective, hence a bijection. Show that its inverse map $V^* \to V$ is also anti-linear.
- P2. (Yet another approach to the Quantum Harmonic Oscillator). Let *V* be a vector space equipped with operators $X, D \in \text{End}(V)$ such that $[D, X] = 1 = \text{Id}_V$ (we checked that $D = \frac{d}{dx}$ and $X = M_x$ satisfy this commutation relation in a previous problem set). Let $A = \frac{1}{\sqrt{2}}(X+D)$ ("lowering operator"), $A^{\dagger} = \frac{1}{\sqrt{2}}(X-D)$ ("raising operator"), and $N = A^{\dagger}A$ ("number operator").

WARNING X, D don't commute, so N isn't quite the same as $H = \frac{1}{2} (X^2 - D^2)$, but as it turns out N isn't very different from H.

- (a) Suppose V is finite-dimensional. Computing the trace Tr[X,D] in two different ways obtain a contradiction.
- (b) Compute $[A, A^{\dagger}]$ and use that to show that [N, A] = -A and $[N, A^{\dagger}] = A^{\dagger}$.
- (c) Suppose that $Nf = \lambda f$ for some $f \in V$ and scalar λ . Show that $N(Af) = (\lambda 1)(Af)$ and $N(A^{\dagger}f) = (\lambda + 1)(A^{\dagger}f)$ (that's why we call these "lowering" and "raising" operators).
- (*d) Let $f_0 = f$ and for $k \ge 1$ define $f_k = (A^{\dagger})^k f$ and $f_{-k} = A^k f$. Show that $Nf_n = (\lambda + n)f_n$ for all n (positive or negative), and conclude that $A^{\dagger}f_n$ is proportional to f_{n+1} that Af_n is proportional to f_{n-1} .
- (e) Conclude that the subspace $W = \text{Span}(\{f_n\}_{n \in \mathbb{Z}})$ is invariant by both A, A^{\dagger} (they map every vector in it to another vector in it) and hence the same is true for $N = A^{\dagger}A$ and $H = N + \frac{1}{2}$.
- P3. Continuing problem P2, suppose now that *V* is an inner product space and that *X*, *D* satisfy $\langle f, Xg \rangle = \langle Xf, g \rangle$ and $\langle f, Dg \rangle = \langle Df, g \rangle$.
 - (a) Show that $\langle f, Ag \rangle = \langle A^{\dagger}f, g \rangle$ and that $\langle f, A^{\dagger}g \rangle = \langle Af, g \rangle$.
 - (b) Let f be non-zero and suppose that $Nf = \lambda f$. Show that $\lambda = \frac{\|Af\|}{\|f\|}$ and conclude that λ is a non-negative real number.
 - (c) Deduce from (a) and P2(d) that for *n* large enough $f_{-(n+1)} = 0$. If $m \ge 0$ is the smallest number such that $f_{-(m+1)} = 0$ show that $f_{-m} \ne 0$ but $Af_{-m} = 0$. In other words *W* must contain a basis vector killed by *A*.
 - (c) Show that $Nf_{-m} = 0$. Conclude that *W* must contain an eigenvector of *N* with eigenvalue 0 and that $\lambda n = 0$ so λ (the eigenvalue of f_0) must be a non-negative integer.
 - (e) Repeating the construction of P2(d),P2(e) but starting from $g_0 = f_{-m}$ show that $W = \text{Span}(\{g_k\}_{k\geq 0})$ where $Ng_k = kg_k$.
 - (f) Show that $\langle g_{k+1}, g_{k+1} \rangle = (k+1) \langle g_k, g_k \rangle$ and prove by induction that $g_k \neq 0$ for all $k \geq 1$. In other words, the eigenvalues of *N* are exactly the non-negative integers (if it has any). This gives further context to P2(a).
 - (g) Letting $h_k = \frac{1}{\|g_0\|} \frac{1}{\sqrt{k!}} g_k$ show that $\{h_k\}_{k \ge 0}$ is an orthonormal system.
 - (h) Let $H = \frac{1}{2}(X^2 D^2)$ (that's the operator from PS10 and problem 4 above). Show that $H = N + \frac{1}{2}$ and conclude that $Hh_k = (k + \frac{1}{2})h_k$. In particular the smallest eigenvalue of H is $\frac{1}{2}$.

- RMK1 When $X = M_x$, $D = \frac{d}{dx}$ the equation $Ag_0 = 0$ becomes the differential equation $g'_0 + xg_0 = 0$, and it is easy to check the solution is $e^{-x^2/2}$ up to scaling. Now applying $A^{\dagger} = M_x - \frac{d}{dx}$ repeatedly will produce the Hermite polynomials (multiplied by $e^{-x^2/2}$) discovered in PS10 and in problem 4 above.
- RMK2 The state g_0 is called the *ground state* the lowest energy state of the quantum harmonic oscillator. The fact that $Hg_0 = \frac{1}{2}g_0$ means that the ground state has energy $\frac{1}{2}$ rather than zero (eigenvalues of *H* correpsonnd to possible energies of the system). The fact that the ground state has positive energy is surprising and has non-trivial physical implications.

Supplementary problem: inequalities and induction

A. Use simple induction on *n* to establish *Lagrange's identity:* for all $\underline{a}, \underline{b} \in \mathbb{R}^n$:

$$\|\underline{a}\|^2 \|\underline{b}\|^2 - (\langle \underline{a}, \underline{b} \rangle)^2 = \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right) - \left(\sum_{i=1}^n a_i b_i\right)^2 = \sum_{1 \le i < j \le n} \left(a_i b_j - a_j b_i\right)^2$$

(note that the Cauchy–Schwarz inequality for \mathbb{R}^n follows immediately)

- B. (Another proof of Cauchy–Schwarz) Let C(n) be the claim "the Cauchy–Schwarz inequality holds for vectors of length n".
 - (a) Prove C(2), for example using Lagrange's identity.
 - (b) Let $\underline{x}, \underline{y}$ be vectors of length 2*n*. Write $\underline{x} = (\underline{x}^1, \underline{x}^2)$ and $\underline{y} = (\underline{y}^1, \underline{y}^2)$ where the components are vectors of length *n*, show that $\langle \underline{x}, \underline{y} \rangle = \langle \underline{x}^1, \underline{y}^1 \rangle + \langle \underline{x}^2, \underline{y}^2 \rangle$ and that $\|\underline{x}\| = \|(\|\underline{x}^1\|, \|\underline{x}^2\|)\|$ where the outer norm is computed in \mathbb{R}^2 .
 - (c) Breaking up vectors of length 2n as in (b) show that C(n) and C(2) together imply C(2n).
 - (d) Prove by induction that $C(2^k)$ holds for all $k \ge 1$.
 - (e) Show that C(n) implies C(n-1) (hint: extend $\underline{x}, \underline{y} \in \mathbb{R}^{n-1}$ to vectors of length *n* by making the last coordinate zero).

The proof techique of problem B is called "forward-backward induction" or "Cauchy induction".

C. For positive quantities x_i the *inequality of the means* is the statement $\frac{1}{\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i}} \leq (\prod_{i=1}^{n}x_i)^{1/n} \leq$

 $\frac{1}{n}\sum_{i=1}^{n}x_{i} \leq \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{p}\right)^{1/p} \leq \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{q}\right)^{1/r}$ (here $1 \leq p \leq r < \infty$) (we call the first value the "harmonic mean", the middle value the "geometric mean", the third value the "arithmetic mean" of the quantities x_{i}).

- (a) Applying the AM-GM inequality $(\prod_{i=1}^{n} x_i)^{1/n} \leq \frac{1}{n} \sum_{i=1}^{n} x_i$ to reciprocals $x_i = \frac{1}{y_i}$ show obtain the HM-AM inequality $\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i}} \leq (\prod_{i=1}^{n} y_i)^{1/n}$. It's therefore enough to prove the AM-GM inequality.
- (b) Applying the inequality $\frac{1}{n}\sum_{i=1}^{n} x_i \leq \left(\frac{1}{n}\sum_{i=1}^{n} |x_i|^{p/r}\right)^{r/p}$ to $x_i = y_i^r$ show that $p \mapsto \left(\frac{1}{n}\sum_{i=1}^{n} |y_i|^p\right)^{1/p}$ is an increasing function of p (the limit of this function as $p \to \infty$ was calculated in the supplement to PS11). It follows that it's enough to prove that $\frac{1}{n}\sum_{i=1}^{n} x_i \leq \left(\frac{1}{n}\sum_{i=1}^{n} x_i^p\right)^{1/p}$.
- (c) Let I(n) be the claim $(\prod_{i=1}^{n} x_i)^{1/n} \le \frac{1}{n} \sum_{i=1}^{n} x_i \le (\frac{1}{n} \sum_{i=1}^{n} x_i^p)^{1/p}$. Prove I(2).
- (d) Show that I(n) and I(2) together imply I(2n), and conclude by induction that $I(2^k)$ holds for all k.
- (e) Show that I(n) implies I(n-1). Note that here one has to choose the extension carefully.
- (f) Show that the inequality of the means holds for all n.

Supplementary problem: Fourier series

- D. In this problem we use the standard inner product on $C(-\pi,\pi)$.
 - (a) Show that $\left\{\frac{1}{\sqrt{2\pi}}\right\} \cup \left\{\frac{1}{\sqrt{\pi}}\cos(nx), \frac{1}{\sqrt{\pi}}\sin(nx)\right\}_{n=1}^{\infty}$ is an orthonormal system there.
 - (b) Let a_0, a_n, b_n be the coefficient of $f(x) = 2\pi |x| x^2$ with respect to $\frac{1}{\sqrt{2n}}, \frac{1}{\sqrt{\pi}}\cos(nx), \frac{1}{\sqrt{\pi}}\sin(nx)$. Find these.
 - (c) Show that for any x, the series $\frac{1}{\sqrt{2\pi}}a_0 + \frac{1}{\sqrt{\pi}}\sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ is absolutely convergent.

FACT1 The system above is *complete*, in that the only function orthogonal to the span is the zero function. If we denote the partial sums $(S_N f)(x) = a_0 \frac{1}{\sqrt{2\pi}} + \frac{1}{\sqrt{\pi}} \sum_{n=1}^N (a_n \cos(nx) + b_n \sin(nx)),$ this shows $S_N f \xrightarrow[N \to \infty]{} f$ "on average" in the sense that $||f - S_N f||^2_{L^2(-\pi,\pi)} = \int_{-\pi}^{\pi} |f(x) - (S_N f)(x)|^2 dx \xrightarrow[N \to \infty]{}$

- 0 (in fact, this holds for any f such that $\int_{-\pi}^{+\pi} |f(x)|^2 dx < \infty$). FACT2 For any $x \in (-\pi, \pi)$ if the sequence of real numbers $\{(S_N f)(x)\}_{N=1}^{\infty}$ converges, and if f is continuous at x, then limit of the sequence is f(x).
- (d) Conclude that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, a discovery of Euler's.

Supplementary problem: The Rayleigh quotient

- E. Given a matrix $A \in M_n(\mathbb{R})$ consider the function $f: \mathbb{R}^n \to \mathbb{R}$ given by $f(\underline{x}) = \underline{x}^t A \underline{x} = \sum_{i,j=1}^n a_{ij} x_i x_j$. We introduce the notation $\|\underline{x}\|_2^2 = \sum_{i=1}^n x_i^2$. (a) Show that $(\nabla f)(\underline{x}) = A\underline{x} + A^t\underline{x}$.

 - (b) Let \underline{v} be the point where f attains its maximum on the unit sphere $S^{n-1} = \{\underline{x} \in \mathbb{R}^n \mid ||\underline{x}|| = 1\}$. Use the method of Largrange multipliers to show that \underline{v} satisfies $A\underline{v} + A^t\underline{v} = \lambda \underline{v}$ for some $\lambda \in \mathbb{R}$.
 - (c) A matrix is symmetric if $A = A^t$. Show that every symmetric matrix has a real eigenvalue.
 - (d) Show that the following two maximization problems are equivalent:

$$\max\left\{f(\underline{x}) \mid \|\underline{w}\|_2 = 1\right\} \leftrightarrow \max\left\{\frac{f(\underline{x})}{\|\underline{x}\|_2^2} \mid \underline{x} \neq \underline{0}\right\}.$$