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Lior Silberman’s Math 223: Problem Set 12 (due 14/4/2021)

Practice problems
Section 6.2

M1. Check that the eigenvectors of the matrix

5 4 2
4 5 2
2 2 2

 from PS10 are orthogonal.

For submission
1. (a) Let {xi}n

i=1 ⊂ R be n real numbers. Applying the CS inequality to the vectors (x1, . . . ,xn) and
(1, . . . ,1), show that

(1
n ∑

n
i=1 xi

)2 ≤ 1
n ∑

n
i=1 x2

i .

RMK The quantities 1
n ∑

n
i=1 xi,

√
1
n ∑

n
i=1 x2

i −
(1

n ∑
n
i=1 xi

)2
are called respectively the expectation and

standard deviation of the random variable that takes the values xi with equal probability 1
n .

(**b) Let {xi}n
i=1 ⊂ R be positive. The Arithmetic Mean of these numbers is the number AM =

1
n ∑

n
i=1 xi. The Harmonic Mean is the number 1

1
n ∑

n
i=1

1
xi

= n
∑

n
i=1

1
xi

. Show the inequality of the

means HM≤AM (with equality iff all the xi are equal) by applying the CS inequality to suitable
vectors.

2. Let A ∈Mn(C) be diagonable. Show that there exists B ∈Mn(C) such that B2 = A.

3. Let C∞
c (R) denote the set of functions on R that are infinitely differentiable and have bounded sup-

port: if f ∈C∞
c (R) then there is some interval [−L,L] such that f = 0 outside it. Let D : C∞

c (R)→
C∞

c (R) be the differentiation operator. Equipe C∞
c (R) with the inner product 〈 f ,g〉=

∫+∞

−∞
f̄ (x)g(x)dx

(the integral converges since by hypothesis the functions are zero outside some finite interval). Show
that 〈 f ,Dg〉= 〈−D f ,g〉 (hint: this is a well-known formula).

The Quantum Harmonic Oscillator, II
Let H =−D2+Mx2 act on V =

{
p(x)e−x2/2 | p ∈ R[x]

}
as in PS10. Also let VC=

{
p(x)e−x2/2 | p ∈ C[x]

}
.

Equip these spaces with the inner product 〈 f ,g〉=
∫+∞

−∞
f̄ gdx.

SUPP (This problem is not for submission)
(a) Let f ,g ∈VC. Show that the integral

∫+∞

−∞
f̄ gdx converges absolutely if f ,g ∈VC and defines an

inner product there.
(b) Show that p̂ =−iD is a symmetric operator on VC in that 〈 f , p̂g〉= 〈p̂ f ,g〉 (this notation comes

from physics).
(c) Show that x̂ = Mx is a symmetric operator on VC in that 〈 f , x̂g〉= 〈x̂ f ,g〉.

4*. By the supplementary problem 〈 · , · 〉 really is an inner product on VC.
(a) Show (either directly or using the results of the supplementary problem) that 〈 f ,Hg〉= 〈H f ,g〉

for all f ,g ∈VC.
DEF In PS10 we showed that H(Vn) ⊂ Vn where Vn =

{
p(x)e−x2/2 | p ∈ R<n[x]

}
. Let Un be the

orthogonal complement of Vn in Vn+1.
(b) Show that Un is one-dimensional and is spanned by a function fn(x) = hn(x)e−x2/2 where hn ∈

R[x] has degree exactly n.
(c) Use (a) to show that H fn is also orthogonal to Vn and conclude that fn is an eigenfunction of H.
(d) Writing H

(
hne−x2/2

)
in the from pe−x2/2 for a polynomial p, and examining the coefficient of

xn in p, show that H fn = (2n+1) fn.
(**e) Show that the hn are (up to normalization) exactly the Hermite polynomials of PS11.
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Extra credit

P1. Let (V,〈 · , · 〉) be an inner product space. For u ∈V set ϕu(v) = 〈u,v〉. That ϕu ∈V ∗ follows from the
definition of the inner product.
(a) Show that the map Φ : V → V ∗ given by φ(u) = ϕu (warning: this is a map valued in linear

maps!) is anti-linear, in that ϕcu+u′ = cϕu +ϕu′ .
(**b) Show that Φ is injective.

Hint: If u 6= 0 show that ϕu is non-zero, and then use additivity of Φ to get injectivity from that.
(c) We proved in class that if dimV = n < ∞ then Φ is surjective, hence a bijection. Show that its

inverse map V ∗→V is also anti-linear.

P2. (Yet another approach to the Quantum Harmonic Oscillator). Let V be a vector space equipped with
operators X ,D ∈ End(V ) such that [D,X ] = 1 = IdV (we checked that D = d

dx and X = Mx satisfy
this commutation relation in a previous problem set). Let A = 1√

2
(X +D) (“lowering operator”),

A† = 1√
2
(X−D) (“raising operator”), and N = A†A (“number operator”).

WARNING X ,D don’t commute, so N isn’t quite the same as H = 1
2

(
X2−D2), but as it turns out N

isn’t very different from H.
(a) Suppose V is finite-dimensional. Computing the trace Tr [X ,D] in two different ways obtain a

contradiction.
(b) Compute

[
A,A†] and use that to show that [N,A] =−A and

[
N,A†]= A†.

(c) Suppose that N f = λ f for some f ∈ V and scalar λ . Show that N(A f ) = (λ − 1)(A f ) and
N(A† f ) = (λ +1)(A† f ) (that’s why we call these “lowering” and “raising” operators).

(*d) Let f0 = f and for k≥ 1 define fk =
(
A†)k f and f−k = Ak f . Show that N fn = (λ +n) fn for all

n (positive or negative), and conclude that A† fn is proportional to fn+1 that A fn is proportional
to fn−1.

(e) Conclude that the subspace W = Span
(
{ fn}n∈Z

)
is invariant by both A,A† (they map every

vector in it to another vector in it) and hence the same is true for N = A†A and H = N + 1
2 .

P3. Continuing problem P2, suppose now that V is an inner product space and that X ,D satisfy 〈 f ,Xg〉=
〈X f ,g〉 and 〈 f ,Dg〉=−〈D f ,g〉.
(a) Show that 〈 f ,Ag〉=

〈
A† f ,g

〉
and that

〈
f ,A†g

〉
= 〈A f ,g〉.

(b) Let f be non-zero and suppose that N f = λ f . Show that λ = ‖A f‖
‖ f‖ and conclude that λ is a

non-negative real number.
(c) Deduce from (a) and P2(d) that for n large enough f−(n+1) = 0. If m≥ 0 is the smallest number

such that f−(m+1) = 0 show that f−m 6= 0 but A f−m = 0. In other words W must contain a basis
vector killed by A.

(c) Show that N f−m = 0. Conclude that W must contain an eigenvector of N with eigenvalue 0 and
that λ −n = 0 so λ (the eigenvalue of f0) must be a non-negative integer.

(e) Repeating the construction of P2(d),P2(e) but starting from g0 = f−m show that W =Span
(
{gk}k≥0

)
where Ngk = kgk.

(f) Show that 〈gk+1,gk+1〉 = (k + 1)〈gk,gk〉 and prove by induction that gk 6= 0 for all k ≥ 1. In
other words, the eigenvalues of N are exactly the non-negative integers (if it has any). This gives
further context to P2(a).

(g) Letting hk =
1
‖g0‖

1√
k!

gk show that {hk}k≥0 is an orthonormal system.

(h) Let H = 1
2(X

2−D2) (that’s the operator from PS10 and problem 4 above). Show that H = N+ 1
2

and conclude that Hhk = (k+ 1
2)hk. In particular the smallest eigenvalue of H is 1

2 .
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RMK1 When X = Mx, D = d
dx the equation Ag0 = 0 becomes the differential equation g′0 +xg0 = 0,

and it is easy to check the solution is e−x2/2 up to scaling. Now applying A† =Mx− d
dx repeatedly

will produce the Hermite polynomials (multiplied by e−x2/2) discovered in PS10 and in problem
4 above.

RMK2 The state g0 is called the ground state – the lowest energy state of the quantum harmonic
oscillator. The fact that Hg0 = 1

2g0 means that the ground state has energy 1
2 rather than zero

(eigenvalues of H correpsonnd to possible energies of the system). The fact that the ground state
has positive energy is surprising and has non-trivial physical implications.

Supplementary problem: inequalities and induction
A. Use simple induction on n to establish Lagrange’s identity: for all a,b ∈ Rn:

‖a‖2 ‖b‖2− (〈a,b〉)2 =

(
n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)
−

(
n

∑
i=1

aibi

)2

= ∑
1≤i< j≤n

(
aib j−a jbi

)2

(note that the Cauchy–Schwarz inequality for Rn follows immediately)

B. (Another proof of Cauchy–Schwarz) Let C(n) be the claim “the Cauchy–Schwarz inequality holds
for vectors of length n”.
(a) Prove C(2), for example using Lagrange’s identity.
(b) Let x,y be vectors of length 2n. Write x = (x1,x2) and y = (y1,y2) where the components are

vectors of length n, show that
〈
x,y
〉
=
〈
x1,y1〉+ 〈x2,y2〉 and that ‖x‖=

∥∥(∥∥x1
∥∥ ,∥∥x2

∥∥)∥∥ where
the outer norm is computed in R2.

(c) Breaking up vectors of length 2n as in (b) show that C(n) and C(2) together imply C(2n).
(d) Prove by induction that C(2k) holds for all k ≥ 1.
(e) Show that C(n) implies C(n−1) (hint: extend x,y ∈ Rn−1 to vectors of length n by making the

last coordinate zero).

The proof techique of problem B is called “forward-backward induction” or “Cauchy induction”.

C. For positive quantities xi the inequality of the means is the statement 1
1
n ∑

n
i=1

1
xi

≤ (∏n
i=1 xi)

1/n ≤

1
n ∑

n
i=1 xi ≤

(1
n ∑

n
i=1 xp

i
)1/p ≤

(1
n ∑

n
i=1 xq

i
)1/r

(here 1 ≤ p ≤ r < ∞) (we call the first value the “har-
monic mean”, the middle value the “geometric mean”, the third value the “arithmetic mean” of the
quantities xi).
(a) Applying the AM-GM inequality (∏n

i=1 xi)
1/n ≤ 1

n ∑
n
i=1 xi to reciprocals xi =

1
yi

show obtain the

HM-AM inequality 1
1
n ∑

n
i=1

1
yi

≤ (∏n
i=1 yi)

1/n. It’s therefore enough to prove the AM-GM inequal-

ity.

(b) Applying the inequality 1
n ∑

n
i=1 xi ≤

(
1
n ∑

n
i=1 |xi|p/r

)r/p
to xi = yr

i show that p 7→
(1

n ∑
n
i=1 |yi|p

)1/p

is an increasing function of p (the limit of this function as p→ ∞ was calculated in the supple-
ment to PS11). It follows that it’s enough to prove that 1

n ∑
n
i=1 xi ≤

(1
n ∑

n
i=1 xp

i
)1/p

.

(c) Let I(n) be the claim (∏n
i=1 xi)

1/n ≤ 1
n ∑

n
i=1 xi ≤

(1
n ∑

n
i=1 xp

i
)1/p

. Prove I(2).
(d) Show that I(n) and I(2) together imply I(2n), and conclude by induction that I(2k) holds for all

k.
(e) Show that I(n) implies I(n−1). Note that here one has to choose the extension carefully.
(f) Show that the inequality of the means holds for all n.
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Supplementary problem: Fourier series
D. In this problem we use the standard inner product on C(−π,π).

(a) Show that
{

1√
2π

}
∪
{

1√
π

cos(nx), 1√
π

sin(nx)
}∞

n=1
is an orthonormal system there.

(b) Let a0,an,bn be the coefficient of f (x) = 2π |x|−x2 with respect to 1√
2n

, 1√
π

cos(nx), 1√
π

sin(nx).
Find these.

(c) Show that for any x, the series 1√
2π

a0 +
1√
π

∑
∞
n=1 (an cos(nx)+bn sin(nx)) is absolutely conver-

gent.
FACT1 The system above is complete, in that the only function orthogonal to the span is the zero

function. If we denote the partial sums (SN f )(x) = a0
1√
2π

+ 1√
π

∑
N
n=1 (an cos(nx)+bn sin(nx)),

this shows SN f −−−→
N→∞

f “on average” in the sense that ‖ f −SN f‖2
L2(−π,π)=

∫
π

−π
| f (x)− (SN f )(x)|2 dx−−−→

N→∞

0 (in fact, this holds for any f such that
∫+π

−π
| f (x)|2 dx < ∞).

FACT2 For any x ∈ (−π,π) if the sequence of real numbers {(SN f )(x)}∞

N=1 converges, and if f is
continuous at x, then limit of the sequence is f (x).

(d) Conclude that ∑
∞
n=1

1
n2 =

π2

6 , a discovery of Euler’s.

Supplementary problem: The Rayleigh quotient
E. Given a matrix A ∈Mn(R) consider the function f : Rn→ R given by f (x) = xtAx = ∑

n
i, j=1 ai jxix j.

We introduce the notation ‖x‖2
2 = ∑

n
i=1 x2

i .
(a) Show that (∇ f )(x) = Ax+Atx.
(b) Let v be the point where f attains its maximum on the unit sphere Sn−1 = {x ∈ Rn | ‖x‖= 1}.

Use the method of Largrange multipliers to show that v satisfies Av+Atv = λv for some λ ∈ R.
(c) A matrix is symmetric if A = At . Show that every symmetric matrix has a real eigenvalue.
(d) Show that the following two maximization problems are equivalent:

max{ f (x) | ‖w‖2 = 1}↔max

{
f (x)

‖x‖2
2

| x 6= 0

}
.


