Lior Silberman's Math 223: Problem Set 12 (due 14/4/2021)
 Practice problems

Section 6.2
M1. Check that the eigenvectors of the matrix $\left(\begin{array}{lll}5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2\end{array}\right)$ from PS10 are orthogonal.

For submission

1. (a) Let $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ be n real numbers. Applying the CS inequality to the vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $(1, \ldots, 1)$, show that $\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$.
RMK The quantities $\frac{1}{n} \sum_{i=1}^{n} x_{i}, \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}}$ are called respectively the expectation and standard deviation of the random variable that takes the values x_{i} with equal probability $\frac{1}{n}$.
(**b) Let $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ be positive. The Arithmetic Mean of these numbers is the number $\mathrm{AM}=$ $\frac{1}{n} \sum_{i=1}^{n} x_{i}$. The Harmonic Mean is the number $\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}$. Show the inequality of the means $\mathrm{HM} \leq \mathrm{AM}$ (with equality iff all the x_{i} are equal) by applying the CS inequality to suitable vectors.
2. Let $A \in M_{n}(\mathbb{C})$ be diagonable. Show that there exists $B \in M_{n}(\mathbb{C})$ such that $B^{2}=A$.
3. Let $C_{\mathrm{c}}^{\infty}(\mathbb{R})$ denote the set of functions on \mathbb{R} that are infinitely differentiable and have bounded support: if $f \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$ then there is some interval $[-L, L]$ such that $f=0$ outside it. Let $D: C_{\mathrm{c}}^{\infty}(\mathbb{R}) \rightarrow$ $C_{\mathrm{c}}^{\infty}(\mathbb{R})$ be the differentiation operator. Equipe $C_{\mathrm{c}}^{\infty}(\mathbb{R})$ with the inner product $\langle f, g\rangle=\int_{-\infty}^{+\infty} \bar{f}(x) g(x) d x$ (the integral converges since by hypothesis the functions are zero outside some finite interval). Show that $\langle f, D g\rangle=\langle-D f, g\rangle$ (hint: this is a well-known formula).

The Quantum Harmonic Oscillator, II

Let $H=-D^{2}+M_{x^{2}}$ act on $V=\left\{p(x) e^{-x^{2} / 2} \mid p \in \mathbb{R}[x]\right\}$ as in PS10. Also let $V_{\mathbb{C}}=\left\{p(x) e^{-x^{2} / 2} \mid p \in \mathbb{C}[x]\right\}$.
Equip these spaces with the inner product $\langle f, g\rangle=\int_{-\infty}^{+\infty} \bar{f} g d x$.
SUPP (This problem is not for submission)
(a) Let $f, g \in V_{\mathbb{C}}$. Show that the integral $\int_{-\infty}^{+\infty} \bar{f} g d x$ converges absolutely if $f, g \in V_{\mathbb{C}}$ and defines an inner product there.
(b) Show that $\hat{p}=-i D$ is a symmetric operator on $V_{\mathbb{C}}$ in that $\langle f, \hat{p} g\rangle=\langle\hat{p} f, g\rangle$ (this notation comes from physics).
(c) Show that $\hat{x}=M_{x}$ is a symmetric operator on $V_{\mathbb{C}}$ in that $\langle f, \hat{x} g\rangle=\langle\hat{x} f, g\rangle$.

4*. By the supplementary problem $\langle\cdot, \cdot\rangle$ really is an inner product on $V_{\mathbb{C}}$.
(a) Show (either directly or using the results of the supplementary problem) that $\langle f, H g\rangle=\langle H f, g\rangle$ for all $f, g \in V_{\mathbb{C}}$.
DEF In PS10 we showed that $H\left(V_{n}\right) \subset V_{n}$ where $V_{n}=\left\{p(x) e^{-x^{2} / 2} \mid p \in \mathbb{R}^{<n}[x]\right\}$. Let U_{n} be the orthogonal complement of V_{n} in V_{n+1}.
(b) Show that U_{n} is one-dimensional and is spanned by a function $f_{n}(x)=h_{n}(x) e^{-x^{2} / 2}$ where $h_{n} \in$ $\mathbb{R}[x]$ has degree exactly n.
(c) Use (a) to show that $H f_{n}$ is also orthogonal to V_{n} and conclude that f_{n} is an eigenfunction of H.
(d) Writing $H\left(h_{n} e^{-x^{2} / 2}\right)$ in the from $p e^{-x^{2} / 2}$ for a polynomial p, and examining the coefficient of x^{n} in p, show that $H f_{n}=(2 n+1) f_{n}$.
(**e) Show that the h_{n} are (up to normalization) exactly the Hermite polynomials of PS11.

Extra credit

P1. Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space. For $\underline{u} \in V$ set $\varphi_{\underline{u}}(\underline{v})=\langle\underline{u}, \underline{v}\rangle$. That $\varphi_{\underline{u}} \in V^{*}$ follows from the definition of the inner product.
(a) Show that the map $\Phi: V \rightarrow V^{*}$ given by $\phi(\underline{u})=\varphi_{\underline{u}}$ (warning: this is a map valued in linear maps!) is anti-linear, in that $\varphi_{c u+u^{\prime}}=\bar{c} \varphi_{\underline{u}}+\varphi_{u^{\prime}}$.
(**b) Show that Φ is injective.
Hint: If $\underline{u} \neq \underline{0}$ show that $\varphi_{\underline{u}}$ is non-zero, and then use additivity of Φ to get injectivity from that.
(c) We proved in class that if $\operatorname{dim} V=n<\infty$ then Φ is surjective, hence a bijection. Show that its inverse map $V^{*} \rightarrow V$ is also anti-linear.

P2. (Yet another approach to the Quantum Harmonic Oscillator). Let V be a vector space equipped with operators $X, D \in \operatorname{End}(V)$ such that $[D, X]=1=\mathrm{Id}_{V}$ (we checked that $D=\frac{d}{d x}$ and $X=M_{x}$ satisfy this commutation relation in a previous problem set). Let $A=\frac{1}{\sqrt{2}}(X+D)$ ("lowering operator"), $A^{\dagger}=\frac{1}{\sqrt{2}}(X-D)$ ("raising operator"), and $N=A^{\dagger} A$ ("number operator").
WARNING X, D don't commute, so N isn't quite the same as $H=\frac{1}{2}\left(X^{2}-D^{2}\right)$, but as it turns out N isn't very different from H.
(a) Suppose V is finite-dimensional. Computing the trace $\operatorname{Tr}[X, D]$ in two different ways obtain a contradiction.
(b) Compute $\left[A, A^{\dagger}\right]$ and use that to show that $[N, A]=-A$ and $\left[N, A^{\dagger}\right]=A^{\dagger}$.
(c) Suppose that $N f=\lambda f$ for some $f \in V$ and scalar λ. Show that $N(A f)=(\lambda-1)(A f)$ and $N\left(A^{\dagger} f\right)=(\lambda+1)\left(A^{\dagger} f\right)$ (that's why we call these "lowering" and "raising" operators).
$(* \mathrm{~d})$ Let $f_{0}=f$ and for $k \geq 1$ define $f_{k}=\left(A^{\dagger}\right)^{k} f$ and $f_{-k}=A^{k} f$. Show that $N f_{n}=(\lambda+n) f_{n}$ for all n (positive or negative), and conclude that $A^{\dagger} f_{n}$ is proportional to f_{n+1} that $A f_{n}$ is proportional to f_{n-1}.
(e) Conclude that the subspace $W=\operatorname{Span}\left(\left\{f_{n}\right\}_{n \in \mathbb{Z}}\right)$ is invariant by both A, A^{\dagger} (they map every vector in it to another vector in it) and hence the same is true for $N=A^{\dagger} A$ and $H=N+\frac{1}{2}$.

P3. Continuing problem P 2 , suppose now that V is an inner product space and that X, D satisfy $\langle f, X g\rangle=$ $\langle X f, g\rangle$ and $\langle f, D g\rangle=-\langle D f, g\rangle$.
(a) Show that $\langle f, A g\rangle=\left\langle A^{\dagger} f, g\right\rangle$ and that $\left\langle f, A^{\dagger} g\right\rangle=\langle A f, g\rangle$.
(b) Let f be non-zero and suppose that $N f=\lambda f$. Show that $\lambda=\frac{\|A f\|}{\|f\|}$ and conclude that λ is a non-negative real number.
(c) Deduce from (a) and P2(d) that for n large enough $f_{-(n+1)}=0$. If $m \geq 0$ is the smallest number such that $f_{-(m+1)}=0$ show that $f_{-m} \neq 0$ but $A f_{-m}=0$. In other words W must contain a basis vector killed by A.
(c) Show that $N f_{-m}=0$. Conclude that W must contain an eigenvector of N with eigenvalue 0 and that $\lambda-n=0$ so λ (the eigenvalue of f_{0}) must be a non-negative integer.
(e) Repeating the construction of P2(d),P2(e) but starting from $g_{0}=f_{-m}$ show that $W=\operatorname{Span}\left(\left\{g_{k}\right\}_{k \geq 0}\right)$ where $N g_{k}=k g_{k}$.
(f) Show that $\left\langle g_{k+1}, g_{k+1}\right\rangle=(k+1)\left\langle g_{k}, g_{k}\right\rangle$ and prove by induction that $g_{k} \neq 0$ for all $k \geq 1$. In other words, the eigenvalues of N are exactly the non-negative integers (if it has any). This gives further context to P2(a).
(g) Letting $h_{k}=\frac{1}{\left\|g_{0}\right\|} \frac{1}{\sqrt{k!}} g_{k}$ show that $\left\{h_{k}\right\}_{k \geq 0}$ is an orthonormal system.
(h) Let $H=\frac{1}{2}\left(X^{2}-D^{2}\right)$ (that's the operator from PS10 and problem 4 above). Show that $H=N+\frac{1}{2}$ and conclude that $H h_{k}=\left(k+\frac{1}{2}\right) h_{k}$. In particular the smallest eigenvalue of H is $\frac{1}{2}$.

RMK1 When $X=M_{x}, D=\frac{d}{d x}$ the equation $A g_{0}=0$ becomes the differential equation $g_{0}^{\prime}+x g_{0}=0$, and it is easy to check the solution is $e^{-x^{2} / 2}$ up to scaling. Now applying $A^{\dagger}=M_{x}-\frac{d}{d x}$ repeatedly will produce the Hermite polynomials (multiplied by $e^{-x^{2} / 2}$) discovered in PS10 and in problem 4 above.
RMK2 The state g_{0} is called the ground state - the lowest energy state of the quantum harmonic oscillator. The fact that $H g_{0}=\frac{1}{2} g_{0}$ means that the ground state has energy $\frac{1}{2}$ rather than zero (eigenvalues of H correpsonnd to possible energies of the system). The fact that the ground state has positive energy is surprising and has non-trivial physical implications.

Supplementary problem: inequalities and induction

A. Use simple induction on n to establish Lagrange's identity: for all $\underline{a}, \underline{b} \in \mathbb{R}^{n}$:

$$
\|\underline{a}\|^{2}\|\underline{b}\|^{2}-(\langle\underline{a}, \underline{b}\rangle)^{2}=\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}=\sum_{1 \leq i<j \leq n}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}
$$

(note that the Cauchy-Schwarz inequality for \mathbb{R}^{n} follows immediately)
B. (Another proof of Cauchy-Schwarz) Let $C(n)$ be the claim "the Cauchy-Schwarz inequality holds for vectors of length n ".
(a) Prove $C(2)$, for example using Lagrange's identity.
(b) Let \underline{x}, y be vectors of length $2 n$. Write $\underline{x}=\left(\underline{x}^{1}, \underline{x}^{2}\right)$ and $y=\left(y^{1}, y^{2}\right)$ where the components are vectors of length n, show that $\langle\underline{x}, \underline{y}\rangle=\left\langle\underline{x}^{1}, \underline{y}^{1}\right\rangle+\left\langle\underline{x}^{2}, \underline{y}^{2}\right\rangle$ and that $\|\underline{x}\|=\left\|\left(\left\|\underline{x}^{1}\right\|,\left\|\underline{x}^{2}\right\|\right)\right\|$ where the outer norm is computed in \mathbb{R}^{2}.
(c) Breaking up vectors of length $2 n$ as in (b) show that $C(n)$ and $C(2)$ together imply $C(2 n)$.
(d) Prove by induction that $C\left(2^{k}\right)$ holds for all $k \geq 1$.
(e) Show that $C(n)$ implies $C(n-1)$ (hint: extend $\underline{x}, \underline{y} \in \mathbb{R}^{n-1}$ to vectors of length n by making the last coordinate zero).

The proof techique of problem B is called "forward-backward induction" or "Cauchy induction".
C. For positive quantities x_{i} the inequality of the means is the statement $\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}} \leq\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq$ $\frac{1}{n} \sum_{i=1}^{n} x_{i} \leq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} \leq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{q}\right)^{1 / r}$ (here $1 \leq p \leq r<\infty$) (we call the first value the "harmonic mean", the middle value the "geometric mean", the third value the "arithmetic mean" of the quantities x_{i}).
(a) Applying the AM-GM inequality $\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}$ to reciprocals $x_{i}=\frac{1}{y_{i}}$ show obtain the HM-AM inequality $\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_{i}}} \leq\left(\prod_{i=1}^{n} y_{i}\right)^{1 / n}$. It's therefore enough to prove the AM-GM inequality.
(b) Applying the inequality $\frac{1}{n} \sum_{i=1}^{n} x_{i} \leq\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|^{p / r}\right)^{r / p}$ to $x_{i}=y_{i}^{r}$ show that $p \mapsto\left(\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{1 / p}$ is an increasing function of p (the limit of this function as $p \rightarrow \infty$ was calculated in the supplement to PS11). It follows that it's enough to prove that $\frac{1}{n} \sum_{i=1}^{n} x_{i} \leq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}$.
(c) Let $I(n)$ be the claim $\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}$. Prove $I(2)$.
(d) Show that $I(n)$ and $I(2)$ together imply $I(2 n)$, and conclude by induction that $I\left(2^{k}\right)$ holds for all k.
(e) Show that $I(n)$ implies $I(n-1)$. Note that here one has to choose the extension carefully.
(f) Show that the inequality of the means holds for all n.

Supplementary problem: Fourier series

D. In this problem we use the standard inner product on $C(-\pi, \pi)$.
(a) Show that $\left\{\frac{1}{\sqrt{2 \pi}}\right\} \cup\left\{\frac{1}{\sqrt{\pi}} \cos (n x), \frac{1}{\sqrt{\pi}} \sin (n x)\right\}_{n=1}^{\infty}$ is an orthonormal system there.
(b) Let a_{0}, a_{n}, b_{n} be the coefficient of $f(x)=2 \pi|x|-x^{2}$ with respect to $\frac{1}{\sqrt{2 n}}, \frac{1}{\sqrt{\pi}} \cos (n x), \frac{1}{\sqrt{\pi}} \sin (n x)$. Find these.
(c) Show that for any x, the series $\frac{1}{\sqrt{2 \pi}} a_{0}+\frac{1}{\sqrt{\pi}} \sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)$ is absolutely convergent.
FACT1 The system above is complete, in that the only function orthogonal to the span is the zero function. If we denote the partial sums $\left(S_{N} f\right)(x)=a_{0} \frac{1}{\sqrt{2 \pi}}+\frac{1}{\sqrt{\pi}} \sum_{n=1}^{N}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)$, this shows $S_{N} f \xrightarrow[N \rightarrow \infty]{\longrightarrow} f$ "on average" in the sense that $\left\|f-S_{N} f\right\|_{L^{2}(-\pi, \pi)}^{2}=\int_{-\pi}^{\pi}\left|f(x)-\left(S_{N} f\right)(x)\right|^{2} \mathrm{~d} x \xrightarrow[N \rightarrow \infty]{\longrightarrow}$ 0 (in fact, this holds for any f such that $\int_{-\pi}^{+\pi}|f(x)|^{2} \mathrm{~d} x<\infty$).
FACT2 For any $x \in(-\pi, \pi)$ if the sequence of real numbers $\left\{\left(S_{N} f\right)(x)\right\}_{N=1}^{\infty}$ converges, and if f is continuous at x, then limit of the sequence is $f(x)$.
(d) Conclude that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, a discovery of Euler's.

Supplementary problem: The Rayleigh quotient

E. Given a matrix $A \in M_{n}(\mathbb{R})$ consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\underline{x})=\underline{x}^{t} A \underline{x}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$.

We introduce the notation $\|\underline{x}\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2}$.
(a) Show that $(\nabla f)(\underline{x})=A \underline{x}+A^{t} \underline{x}$.
(b) Let \underline{v} be the point where f attains its maximum on the unit sphere $S^{n-1}=\left\{\underline{x} \in \mathbb{R}^{n} \mid\|\underline{x}\|=1\right\}$. Use the method of Largrange multipliers to show that \underline{v} satisfies $A \underline{v}+A^{t} \underline{v}=\lambda \underline{v}$ for some $\lambda \in \mathbb{R}$.
(c) A matrix is symmetric if $A=A^{t}$. Show that every symmetric matrix has a real eigenvalue.
(d) Show that the following two maximization problems are equivalent:

$$
\max \left\{f(\underline{x}) \mid\|\underline{w}\|_{2}=1\right\} \leftrightarrow \max \left\{\left.\frac{f(\underline{x})}{\|\underline{x}\|_{2}^{2}} \right\rvert\, \underline{x} \neq \underline{0}\right\}
$$

