Lior Silberman's Math 223: Problem Set 11 (due 4/4/2022)

Practice problems 1: diagonalization

Section 6.1: all problems are suitable
M1. Write down some matrix $A \in M_{4}(\mathbb{R})$ such that A has four distinct eigenvalues (your choice) with the correspoding eigenvectors being $\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 1 \\ 6\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 2\end{array}\right)$.

M2. Let V be a vector space, $\varphi \in V^{*}$ a linear functional and $\underline{w} \in V$ fixed vector. Suppose that $\varphi(\underline{w}) \neq 0$.
(a) Show directly that $V=\operatorname{Ker} \varphi \oplus \operatorname{Span}(\underline{w})$.
(b) Show that the map $T: V \rightarrow V$ given by $T \underline{v}=\underline{v}-2 \frac{\varphi(\underline{v})}{\varphi(\underline{w})} \underline{w}$ is linear, and compute T^{2}.
(c) What are the eigenvalues of T ? The eigenspaces? Find a basis of V consisting of eigenvectors.

Practice problems 2: calculating with inner products

M3. Let $S=\left\{\left(\begin{array}{l}i \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ i+1 \\ 1-2 i\end{array}\right),\left(\begin{array}{c}0 \\ 5+2 i \\ 1+2 i\end{array}\right)\right\} \subset \mathbb{C}^{3}$.
(a) Calculate the 9 pairwise inner products of the vectors.
(b) Calculate the norms of the three vectors (recall that $\|\underline{x}\|=\sqrt{\langle\underline{x}, \underline{x}\rangle}$).

M4. Let $S=\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)\right\} \subset \mathbb{R}^{3}$.
(a) Verify that this is an orthonormal basis of \mathbb{R}^{3}.
(b) Find the coordinates of the vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}5 \\ 6 \\ 7\end{array}\right)$ in this basis using the inner product.

M5. Using the standard $\left(L^{2}\right)$ inner product on $C(-1,1)$ apply the Gram-Schmidt procedure to the following independent sequences:
(a) $\left\{1, x, x^{2}, x^{3}\right\}$ (in that order)

RMK Applying the Gram-Schmidt procedure to the full sequence $\left\{x^{n}\right\}_{n=0}^{\infty}$ yields the sequence of Legendre polynomials $P_{n}(x)$ (with a non-standard normalization).
(b) $\left\{x^{3}, x^{2}, x, 1\right\}$ (in that order)

RMK We can do the same with other inner products. Repeat part (a) with the inner products:
(c) (Hermit polynomials) $\langle f, g\rangle=\int_{-\infty}^{+\infty} f(x) g(x) e^{-x^{2}} \mathrm{~d} x$.
(d) (Laguerre polynomials) $\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x) e^{-x} \mathrm{~d} x$.

More on diagonalization

1. (a) Show that every $T \in \operatorname{End}(V)$ has a real eigenvalue if V is a real vector space and $\operatorname{dim}_{\mathbb{R}} V$ is odd.
(b) Define $T: \mathbb{R}[x]^{\leq 3} \rightarrow \mathbb{R}[x]^{\leq 3}$ by $(T p)(x)=x^{3} p(-1 / x)$. Prove that T has no real eigenvalues. (Hint: what is T^{2} ?)
(c) Define $T: \mathbb{C}[x]^{\leq 3} \rightarrow \mathbb{C}[x]^{\leq 3}$ by $(T p)(x)=x^{3} p(-1 / x)$. Find the spectrum of T and exhibit one eigenvector for each eigenvalue.
2. Let V be a vector space, let $\left\{\lambda_{i}\right\}_{i=1}^{r}$ be distinct numbers, and let $T \in \operatorname{End}(V)$ satisfy $p(T)=0$ where $p(x)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{r}\right)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)$.
(a) Show that the spectrum of T is contained in $\left\{\lambda_{i}\right\}_{i=1}^{r}$.
(b) Fix j and define an auxiliary map $R_{j} \in \operatorname{End}(V)$ by $R_{j}=\prod_{i \neq j}\left(\frac{T-\lambda_{i}}{\lambda_{j}-\lambda_{i}}\right)$. Show that $T \cdot R_{j}=\lambda_{j} R_{j}$.
(c) Show by induction on k that $T^{k} R_{j}=\lambda_{j}^{k} R_{j}$ for all $k \geq 0$.
(d) Show that for any polynomial $q \in \mathbb{C}[x]$ we have an equality of linear maps $q(T) R_{j}=q\left(\lambda_{j}\right) R_{j}$ (on the left we compose the linear maps $q(T)$ and R_{j}; on the right we multiply the linear map R_{j} by the scalar $q\left(\lambda_{j}\right)$).
(**e) Show that R_{j} is a projection.
(f) Show that $\operatorname{Im}\left(R_{j}\right)=\operatorname{Ker}\left(T-\lambda_{j}\right)$.
($* * \mathrm{~g}$) Show that T is diagonable.

Inner products

3. Find an orthonormal basis for the subspace $W^{\perp} \subset \mathbb{R}^{4}$ if $W=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)\right\}$.
4. The trace of a square matrix is the sum of its diagonal entries $\left(\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}\right)$.

PRAC (MT2) Show that $\operatorname{tr}: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is a linear functional and $\operatorname{that} \operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all A, B, concluding that $\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr}(A)$ if S is invertible. On the other hand ${ }^{(* *)}$ find three 2×2 matrices A, B, C such that $\operatorname{tr}(A B C) \neq \operatorname{tr}(B A C)$.
(a) Show that $\langle A, B\rangle \stackrel{\text { def }}{=} \operatorname{tr}\left(A^{t} B\right)$ is an inner product on $M_{n}(\mathbb{R})$

DEF For $A \in M_{m, n}(\mathbb{C})$, its Hermitian conjuate is the matrix $A^{\dagger} \in M_{n, m}(\mathbb{C})$ with entries $a_{i j}^{\dagger}=\overline{a_{j i}}$ (complex conjuguate).
(d) Show that $\langle A, B\rangle \stackrel{\text { def }}{=} \operatorname{tr}\left(A^{\dagger} B\right)$ is a Hermitian product on $M_{n}(\mathbb{C})$.

Extra credit: commuting transformations

P1. Fix a vector space V and let $T, S \in \operatorname{End}(V)$ satisfy $T S=S T$.
(a) Suppose that $T \underline{v}=\lambda \underline{v}$ for some λ and $\underline{v} \in V$. Show that $T(S \underline{v})=\lambda(S \underline{v})$.

CONCLUSION Let $V_{\lambda}=\{\underline{v} \in V \mid T \underline{v}=\lambda \underline{v}\}$. Then $S\left(V_{\lambda}\right) \subset V_{\lambda}$.
SUPP Let A, B be invertible linear maps. Show that $A B=B A$ iff $A B A^{-1} B^{-1}=\mathrm{Id}$.
DEF An image of the discrete Heisenberg group is a triple of invertible maps $A, B, Z \in \operatorname{End}(V)$ such that $A B A^{-1} B^{-1}=Z$ and such that $A Z A^{-1} Z^{-1}=B Z B^{-1} Z^{-1}=\operatorname{Id}$ (" A, B commute with their commutator"). Fix such a triple for the rest of the problem.
$(* \mathrm{~b})$ Let ζ be an eigenvalue of Z, and let λ be an eigenvalue of the map $A{ }_{v_{\zeta}}$ we bound in problem (a) (we set $V_{\zeta}=\operatorname{Ker}(Z-\zeta)$). Show that $\lambda \zeta$ is also an eigenvalue of $A \upharpoonright_{\zeta}$ (hint: try doing something to the eigenvector).
(c) Suppose V is finite-dimensional. Show that we must have $\zeta^{k}=1$ for some k.
(d) $\operatorname{Compute} \operatorname{det}\left(Z \upharpoonright_{\zeta}\right)$ in two different ways to show that $\zeta^{\operatorname{dim} V_{\zeta}}=1$.

Extra credit: norms

DEFINITION. Let V be a real or complex vector space. A norm (="notion of length") on V is a map $\|\cdot\|: V \rightarrow \mathbb{R}_{\geq 0}$ such that
(1) $\|a \underline{v}\|=|a|\|\underline{v}\|$ (that is, $3 \underline{v}$ is three times as long as \underline{v})
(2) $\|\underline{u}+\underline{v}\| \leq\|\underline{u}\|+\|\underline{v}\|$ ("triangle inequality")
(3) $\|\underline{v}\|=0$ iff $\underline{v}=\underline{0}$ (note that one direction follows from (1)).

P2. (Examples of norms)
(a) Show that $\|\underline{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$ and $\|\underline{x}\|_{1}=\sum_{i}\left|x_{i}\right|$ are norms on \mathbb{R}^{n} or \mathbb{C}^{n}.
(b) Show that $\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)|$ and $\|f\|_{1}=\int_{a}^{b}|f(x)| d x$ are norms on $C(a, b)$ (continuous functions on the interval $[a, b]$).
(c) (Sobolev norm) Show that $\|f\|_{H^{1}}^{2}=\int_{a}^{b}\left(|f(x)|^{2}+\left|f^{\prime}(x)\right|^{2}\right) \mathrm{d} x$ defines a norm on $C^{\infty}(a, b)$ (Hint: this norm is associated to an inner product)

Supplementary problem: ℓ^{p} norms

A. For $1 \leq p<\infty$ and $\underline{x} \in \mathbb{C}^{n}$ define $\|\underline{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$.
(a) Show that $\|\underline{x}\|=0$ iff $\underline{x}=\underline{0}$ and that $\|\alpha \underline{x}\|_{p}=|\alpha|\|\underline{x}\|_{p}$ for all scalars α.
(b) Show that $\lim _{p \rightarrow \infty}\|\underline{x}\|_{p}=\|\underline{x}\|_{\infty}$.

RMK This justifies the notation from problem P2.
B Fix $p \in(1, \infty)$ and let $q \in(1, \infty)$ be defined by $\frac{1}{p}+\frac{1}{q}=1$ (we say the exponents p, q are dual).
(a) Prove Young's inequality: for all $a, b \geq 0$ we have $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$.

Hint: Use the convexity of the function $f(t)=a^{(1-t) p} b^{t q}$, or direct calculus.
(b) Summing over the coordinates show for any $\underline{x}, \underline{y}$ that $\left|\sum_{i=1}^{n} x_{i} \overline{y_{i}}\right| \leq \frac{1}{p}\|\underline{x}\|_{p}^{p}+\frac{1}{q}\|\underline{y}\|_{q}^{q}$.
(c) Replacing \underline{x} with $\frac{x}{\|\underline{x}\|_{p}}$ and \underline{y} with $\frac{y}{\|\underline{y}\|_{q}}$ and using the scaling behaviour from part $\mathrm{A}(\mathrm{a})$, prove Hölder's inequality

$$
|\langle\underline{y}, \underline{x}\rangle|=\|\underline{x}\|_{p}\|\underline{y}\|_{q} .
$$

(d) Check that the inequality also holds in the extreme cases $p=1, q=\infty$ and $p=\infty, q=1$ (these exponents are dual if we interpret $\frac{1}{\infty}=0$).
(e) Show that $\|\underline{x}\|_{p}=\max \left\{\langle\underline{y}, \underline{x}\rangle:\|\underline{y}\|_{q}=1\right\}$.

Hint: Choose y_{i} so that $x_{i} \overline{y_{i}}=c\left|x_{i}\right|^{p}$ for a positive constant c chosen so that $\|\underline{y}\|_{q}=1$.
(f) Show that $\left\|\underline{x}+\underline{x}^{\prime}\right\|_{p} \leq\|\underline{x}\|_{p}+\left\|\underline{x}^{\prime}\right\|_{p}$ for all $\underline{x}, \underline{x}^{\prime}$.

Hint: $\left\langle\underline{y}, \underline{x}+\underline{x}^{\prime}\right\rangle=\langle\underline{y}, \underline{x}\rangle+\left\langle\underline{y}, \underline{x}^{\prime}\right\rangle$.
C. DEF Let $\ell^{p}=\left\{\left.\underline{a} \in \mathbb{C}^{\mathbb{N}}\left|\sum_{i=1}^{\infty}\right| a_{i}\right|^{p}<\infty\right\}$ (read: "ell-p" be the space of p-summable sequences.
(a) Use scaling and Minkowski's inequality (for the partial sums of the series) to show that ℓ^{p} is a subspace of $\mathbb{C}^{\mathbb{N}}$.
(b) Show that $\|\underline{a}\|_{p}=\left(\sum_{i=1}^{\infty}\left|a_{i}\right|^{p}\right)^{1 / p}$ is a norm on ℓ^{p}.
(c) Show that $\ell^{p} \subset \ell^{q}$ if $p \leq q$.

