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Lior Silberman’s Math 223: Problem Set 11 (due 4/4/2022)

Practice problems 1: diagonalization
Section 6.1: all problems are suitable

M1. Write down some matrix A ∈M4(R) such that A has four distinct eigenvalues (your choice) with the

correspoding eigenvectors being


1
2
0
3

 ,


2
4
1
6

 ,


2
2
1
1

 ,


0
1
0
2

.

M2. Let V be a vector space, ϕ ∈V ∗ a linear functional and w∈V a fixed vector. Suppose that ϕ(w) 6= 0.
(a) Show directly that V = Kerϕ⊕Span(w).
(b) Show that the map T : V →V given by T v = v−2 ϕ(v)

ϕ(w)w is linear, and compute T 2.
(c) What are the eigenvalues of T ? The eigenspaces? Find a basis of V consisting of eigenvectors.

Practice problems 2: calculating with inner products

M3. Let S =


 i

0
0

 ,

 1
i+1

1−2i

 ,

 0
5+2i
1+2i

⊂ C3.

(a) Calculate the 9 pairwise inner products of the vectors.
(b) Calculate the norms of the three vectors (recall that ‖x‖=

√
〈x,x〉).

M4. Let S =

 1√
3

1
1
1

 , 1√
2

 1
0
−1

 , 1√
6

 1
−2
1

⊂ R3.

(a) Verify that this is an orthonormal basis of R3.

(b) Find the coordinates of the vectors

1
0
0

 ,

5
6
7

 in this basis using the inner product.

M5. Using the standard (L2) inner product on C(−1,1) apply the Gram–Schmidt procedure to the fol-
lowing independent sequences:
(a)

{
1,x,x2,x3} (in that order)

RMK Applying the Gram–Schmidt procedure to the full sequence {xn}∞

n=0 yields the sequence of
Legendre polynomials Pn(x) (with a non-standard normalization).

(b)
{

x3,x2,x,1
}

(in that order)

RMK We can do the same with other inner products. Repeat part (a) with the inner products:
(c) (Hermit polynomials) 〈 f ,g〉=

∫+∞

−∞
f (x)g(x)e−x2

dx.
(d) (Laguerre polynomials) 〈 f ,g〉=

∫
∞

0 f (x)g(x)e−x dx.
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More on diagonalization
1. (a) Show that every T ∈ End(V ) has a real eigenvalue if V is a real vector space and dimRV is odd.

(b) Define T : R[x]≤3 → R[x]≤3 by (T p)(x) = x3 p(−1/x). Prove that T has no real eigenvalues.
(Hint: what is T 2?)

(c) Define T : C[x]≤3→ C[x]≤3 by (T p)(x) = x3 p(−1/x). Find the spectrum of T and exhibit one
eigenvector for each eigenvalue.

2. Let V be a vector space, let {λi}r
i=1 be distinct numbers, and let T ∈ End(V ) satisfy p(T ) = 0 where

p(x) = (x−λ1) · · ·(x−λr) = ∏
r
i=1 (x−λi).

(a) Show that the spectrum of T is contained in {λi}r
i=1.

(b) Fix j and define an auxiliary map R j ∈ End(V ) by R j = ∏i 6= j

(
T−λi
λ j−λi

)
. Show that T ·R j = λ jR j.

(c) Show by induction on k that T kR j = λ k
j R j for all k ≥ 0.

(d) Show that for any polynomial q∈C[x] we have an equality of linear maps q(T )R j = q(λ j)R j (on
the left we compose the linear maps q(T ) and R j; on the right we multiply the linear map R j by
the scalar q(λ j)).

(**e) Show that R j is a projection.
(f) Show that Im(R j) = Ker(T −λ j).
(**g) Show that T is diagonable.

Inner products

3. Find an orthonormal basis for the subspace W⊥ ⊂ R4 if W = Span




1
1
0
0

 ,


1
2
3
4


.

4. The trace of a square matrix is the sum of its diagonal entries (trA = ∑
n
i=1 aii).

PRAC (MT2) Show that tr : Mn(R)→ R is a linear functional and that tr(AB) = tr(BA) for all A,B,
concluding that tr(S−1AS)= tr(A) if S is invertible. On the other hand (**) find three 2x2 matrices
A,B,C such that tr(ABC) 6= tr(BAC).

(a) Show that 〈A,B〉 def
= tr(AtB) is an inner product on Mn(R)

DEF For A ∈ Mm,n(C), its Hermitian conjuate is the matrix A† ∈ Mn,m(C) with entries a†
i j = a ji

(complex conjuguate).
(d) Show that 〈A,B〉 def

= tr
(
A†B

)
is a Hermitian product on Mn(C).

Extra credit: commuting transformations
P1. Fix a vector space V and let T,S ∈ End(V ) satisfy T S = ST .

(a) Suppose that T v = λv for some λ and v ∈V . Show that T (Sv) = λ (Sv).
CONCLUSION Let Vλ = {v ∈V | T v = λv}. Then S(Vλ )⊂Vλ .
SUPP Let A,B be invertible linear maps. Show that AB = BA iff ABA−1B−1 = Id.
DEF An image of the discrete Heisenberg group is a triple of invertible maps A,B,Z ∈ End(V ) such

that ABA−1B−1 = Z and such that AZA−1Z−1 = BZB−1Z−1 = Id (“A,B commute with their
commutator”). Fix such a triple for the rest of the problem.

(*b) Let ζ be an eigenvalue of Z, and let λ be an eigenvalue of the map A �Vζ
we bound in problem

(a) (we set Vζ = Ker(Z−ζ )). Show that λζ is also an eigenvalue of A �Vζ
(hint: try doing

something to the eigenvector).
(c) Suppose V is finite-dimensional. Show that we must have ζ k = 1 for some k.
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(d) Compute det(Z �Vζ
) in two different ways to show that ζ

dimVζ = 1.

Extra credit: norms

DEFINITION. Let V be a real or complex vector space. A norm (=”notion of length”) on V is a map
‖·‖ : V → R≥0such that

(1) ‖av‖= |a|‖v‖ (that is, 3v is three times as long as v)
(2) ‖u+ v‖ ≤ ‖u‖+‖v‖ (“triangle inequality”)
(3) ‖v‖= 0 iff v = 0 (note that one direction follows from (1)).

P2. (Examples of norms)
(a) Show that ‖x‖

∞
= maxi |xi| and ‖x‖1 = ∑i |xi| are norms on Rn or Cn.

(b) Show that ‖ f‖
∞
= maxa≤x≤b | f (x)| and ‖ f‖1 =

∫ b
a | f (x)|dx are norms on C(a,b) (continuous

functions on the interval [a,b]).
(c) (Sobolev norm) Show that ‖ f‖2

H1 =
∫ b

a

(
| f (x)|2 + | f ′(x)|2

)
dx defines a norm on C∞(a,b) (Hint:

this norm is associated to an inner product)

Supplementary problem: `p norms

A. For 1≤ p < ∞ and x ∈ Cn define ‖x‖p = (∑n
i=1 |xi|p)1/p.

(a) Show that ‖x‖= 0 iff x = 0 and that ‖αx‖p = |α|‖x‖p for all scalars α .
(b) Show that limp→∞ ‖x‖p = ‖x‖∞

.
RMK This justifies the notation from problem P2.

B Fix p ∈ (1,∞) and let q ∈ (1,∞) be defined by 1
p +

1
q = 1 (we say the exponents p,q are dual).

(a) Prove Young’s inequality: for all a,b≥ 0 we have ab≤ ap

p + bq

q .

Hint: Use the convexity of the function f (t) = a(1−t)pbtq, or direct calculus.
(b) Summing over the coordinates show for any x,y that |∑n

i=1 xiyi| ≤ 1
p ‖x‖

p
p +

1
q

∥∥y
∥∥q

q.

(c) Replacing x with x
‖x‖p

and y with
y

‖y‖q
and using the scaling behaviour from part A(a), prove

Hölder’s inequality ∣∣〈y,x〉∣∣= ‖x‖p

∥∥y
∥∥

q .

(d) Check that the inequality also holds in the extreme cases p = 1,q = ∞ and p = ∞,q = 1 (these
exponents are dual if we interpret 1

∞
= 0).

(e) Show that ‖x‖p = max
{〈

y,x
〉

:
∥∥y
∥∥

q = 1
}

.

Hint: Choose yi so that xiyi = c |xi|p for a positive constant c chosen so that
∥∥y
∥∥

q = 1.
(f) Show that ‖x+ x′‖p ≤ ‖x‖p +‖x′‖p for all x,x′.

Hint:
〈
y,x+ x′

〉
=
〈
y,x
〉
+
〈
y,x′
〉
.

C. DEF Let `p =
{

a ∈ CN | ∑∞
i=1 |ai|p < ∞

}
(read: “ell-p” be the space of p-summable sequences.

(a) Use scaling and Minkowski’s inequality (for the partial sums of the series) to show that `p is a
subspace of CN.

(b) Show that ‖a‖p = (∑∞
i=1 |ai|p)1/p is a norm on `p.

(c) Show that `p ⊂ `q if p≤ q.


