Lior Silberman's Math 223: Problem Set 11 (due 4/4/2022)

Practice problems 1: diagonalization

Section 6.1: all problems are suitable

M1. Write down some matrix $A \in M_4(\mathbb{R})$ such that A has four distinct eigenvalues (your choice) with the

correspoding eigenvectors being

$$g\begin{pmatrix}1\\2\\0\\3\end{pmatrix},\begin{pmatrix}2\\4\\1\\6\end{pmatrix},\begin{pmatrix}2\\2\\1\\1\end{pmatrix},\begin{pmatrix}0\\1\\0\\2\end{pmatrix}.$$

- M2. Let *V* be a vector space, $\varphi \in V^*$ a linear functional and $\underline{w} \in V$ a fixed vector. Suppose that $\varphi(\underline{w}) \neq 0$. (a) Show directly that $V = \text{Ker } \varphi \oplus \text{Span}(\underline{w})$.
 - (b) Show that the map $T: V \to V$ given by $T\underline{v} = \underline{v} 2\frac{\varphi(\underline{v})}{\varphi(\underline{w})}\underline{w}$ is linear, and compute T^2 . (c) What are the eigenvalues of T? The eigenspaces? Find a basis of V consisting of eigenvectors.

Practice problems 2: calculating with inner products

M3. Let
$$S = \left\{ \begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i+1 \\ 1-2i \end{pmatrix}, \begin{pmatrix} 0 \\ 5+2i \\ 1+2i \end{pmatrix} \right\} \subset \mathbb{C}^3.$$

- (a) Calculate the 9 pairwise inner products of the vectors.
- (b) Calculate the norms of the three vectors (recall that $\|\underline{x}\| = \sqrt{\langle \underline{x}, \underline{x} \rangle}$).

M4. Let
$$S = \left\{ \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \right\} \subset \mathbb{R}^3$$

- (a) Verify that this is an orthonormal basis of \mathbb{R}^3
- (b) Find the coordinates of the vectors $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 5\\6\\7 \end{pmatrix}$ in this basis using the inner product.
- M5. Using the standard (L^2) inner product on C(-1,1) apply the Gram–Schmidt procedure to the following independent sequences:
 - (a) $\{1, x, x^2, x^3\}$ (in that order)
 - RMK Applying the Gram–Schmidt procedure to the full sequence $\{x^n\}_{n=0}^{\infty}$ yields the sequence of Legendre polynomials $P_n(x)$ (with a non-standard normalization).
 - (b) $\{x^3, x^2, x, 1\}$ (in that order)

RMK We can do the same with other inner products. Repeat part (a) with the inner products:

- (c) (Hermit polynomials) $\langle f, g \rangle = \int_{-\infty}^{+\infty} f(x)g(x)e^{-x^2} dx.$
- (d) (Laguerre polynomials) $\langle f,g \rangle = \int_0^\infty f(x)g(x)e^{-x} dx.$

More on diagonalization

- 1. (a) Show that every $T \in \text{End}(V)$ has a real eigenvalue if V is a real vector space and dim_R V is odd.
 - (b) Define $T: \mathbb{R}[x]^{\leq 3} \to \mathbb{R}[x]^{\leq 3}$ by $(Tp)(x) = x^3p(-1/x)$. Prove that T has no real eigenvalues. (Hint: what is T^2 ?)
 - (c) Define $T: \mathbb{C}[x]^{\leq 3} \to \mathbb{C}[x]^{\leq 3}$ by $(Tp)(x) = x^3p(-1/x)$. Find the spectrum of *T* and exhibit one eigenvector for each eigenvalue.
- 2. Let *V* be a vector space, let $\{\lambda_i\}_{i=1}^r$ be *distinct* numbers, and let $T \in \text{End}(V)$ satisfy p(T) = 0 where $p(x) = (x \lambda_1) \cdots (x \lambda_r) = \prod_{i=1}^r (x \lambda_i)$.
 - (a) Show that the spectrum of *T* is contained in $\{\lambda_i\}_{i=1}^r$.
 - (b) Fix *j* and define an auxiliary map $R_j \in \text{End}(V)$ by $R_j = \prod_{i \neq j} \left(\frac{T \lambda_i}{\lambda_j \lambda_i} \right)$. Show that $T \cdot R_j = \lambda_j R_j$.
 - (c) Show by induction on k that $T^k R_j = \lambda_i^k R_j$ for all $k \ge 0$.
 - (d) Show that for any polynomial $q \in \mathbb{C}[x]$ we have an equality of linear maps $q(T)R_j = q(\lambda_j)R_j$ (on the left we compose the linear maps q(T) and R_j ; on the right we multiply the linear map R_j by the scalar $q(\lambda_j)$).
 - (**e) Show that R_j is a projection.
 - (f) Show that $\text{Im}(R_i) = \text{Ker}(T \lambda_i)$.
 - (**g) Show that T is diagonable.

Inner products

- 3. Find an orthonormal basis for the subspace $W^{\perp} \subset \mathbb{R}^4$ if $W = \text{Span} \left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} \right\}.$
- 4. The *trace* of a square matrix is the sum of its diagonal entries (trA = ∑_{i=1}ⁿ a_{ii}).
 PRAC (MT2) Show that tr: M_n(ℝ) → ℝ is a linear functional and that tr(AB) = tr(BA) for all A, B, concluding that tr(S⁻¹AS) = tr(A) if S is invertible. On the other hand (**) find three 2x2 matrices A, B, C such that tr(ABC) ≠ tr(BAC).
 - (a) Show that $\langle A, B \rangle \stackrel{\text{def}}{=} \operatorname{tr} (A^t B)$ is an inner product on $M_n(\mathbb{R})$
 - DEF For $A \in M_{m,n}(\mathbb{C})$, its *Hermitian conjuate* is the matrix $A^{\dagger} \in M_{n,m}(\mathbb{C})$ with entries $a_{ij}^{\dagger} = \overline{a_{ji}}$ (complex conjuguate).
 - (d) Show that $\langle A, B \rangle \stackrel{\text{def}}{=} \operatorname{tr} (A^{\dagger}B)$ is a Hermitian product on $M_n(\mathbb{C})$.

Extra credit: commuting transformations

- P1. Fix a vector space V and let $T, S \in \text{End}(V)$ satisfy TS = ST. (a) Suppose that $T\underline{v} = \lambda \underline{v}$ for some λ and $\underline{v} \in V$. Show that $T(S\underline{v}) = \lambda (S\underline{v})$. CONCLUSION Let $V_{\lambda} = \{\underline{v} \in V \mid T\underline{v} = \lambda \underline{v}\}$. Then $S(V_{\lambda}) \subset V_{\lambda}$. SUPP Let A, B be invertible linear maps. Show that AB = BA iff $ABA^{-1}B^{-1} = \text{Id}$.
 - DEF An image of the discrete Heisenberg group is a triple of invertible maps $A, B, Z \in \text{End}(V)$ such that $ABA^{-1}B^{-1} = Z$ and such that $AZA^{-1}Z^{-1} = BZB^{-1}Z^{-1} = \text{Id}$ ("A, B commute with their commutator"). Fix such a triple for the rest of the problem.
 - (*b) Let ζ be an eigenvalue of Z, and let λ be an eigenvalue of the map $A \upharpoonright_{V_{\zeta}}$ we bound in problem (a) (we set $V_{\zeta} = \text{Ker}(Z - \zeta)$). Show that $\lambda \zeta$ is also an eigenvalue of $A \upharpoonright_{V_{\zeta}}$ (hint: try doing something to the eigenvector).
 - (c) Suppose V is finite-dimensional. Show that we must have $\zeta^k = 1$ for some k.

(d) Compute det $(Z \upharpoonright_{V_{\zeta}})$ in two different ways to show that $\zeta^{\dim V_{\zeta}} = 1$.

Extra credit: norms

DEFINITION. Let V be a real or complex vector space. A norm (="notion of length") on V is a map $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$ such that

- (1) $||a\underline{v}|| = |a| ||\underline{v}||$ (that is, $3\underline{v}$ is three times as long as \underline{v})
- (2) $\|\underline{u} + \underline{v}\| \le \|\underline{u}\| + \|\underline{v}\|$ ("triangle inequality")
- (3) $\|\underline{v}\| = 0$ iff $\underline{v} = \underline{0}$ (note that one direction follows from (1)).

P2. (Examples of norms)

- (a) Show that $\|\underline{x}\|_{\infty} = \max_{i} |x_{i}|$ and $\|\underline{x}\|_{1} = \sum_{i} |x_{i}|$ are norms on \mathbb{R}^{n} or \mathbb{C}^{n} .
- (b) Show that $||f||_{\infty} = \max_{a \le x \le b} |f(x)|$ and $||f||_1 = \int_a^b |f(x)| dx$ are norms on C(a,b) (continuous functions on the interval [a,b]).
- (c) (Sobolev norm) Show that $||f||_{H^1}^2 = \int_a^b \left(|f(x)|^2 + |f'(x)|^2 \right) dx$ defines a norm on $C^{\infty}(a,b)$ (Hint: this norm is associated to an inner product)

Supplementary problem: ℓ^p norms

- A. For $1 \le p < \infty$ and $\underline{x} \in \mathbb{C}^n$ define $\|\underline{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$.
 - (a) Show that $\|\underline{x}\| = 0$ iff $\underline{x} = \underline{0}$ and that $\|\alpha \underline{x}\|_p = |\alpha| \|\underline{x}\|_p$ for all scalars α .
 - (b) Show that $\lim_{p\to\infty} \|\underline{x}\|_p = \|\underline{x}\|_{\infty}$.

RMK This justifies the notation from problem P2.

B Fix $p \in (1,\infty)$ and let $q \in (1,\infty)$ be defined by $\frac{1}{p} + \frac{1}{q} = 1$ (we say the exponents p,q are *dual*).

(a) Prove *Young's inequality*: for all $a, b \ge 0$ we have $ab \le \frac{a^p}{p} + \frac{b^q}{q}$.

Hint: Use the convexity of the function $f(t) = a^{(1-t)p}b^{tq}$, or direct calculus.

- (b) Summing over the coordinates show for any $\underline{x}, \underline{y}$ that $|\sum_{i=1}^{n} x_i \overline{y_i}| \le \frac{1}{p} ||\underline{x}||_p^p + \frac{1}{q} ||\underline{y}||_q^q$.
- (c) Replacing <u>x</u> with $\frac{x}{\|x\|_p}$ and <u>y</u> with $\frac{y}{\|y\|_p}$ and using the scaling behaviour from part A(a), prove Hölder's inequality

$$\left\|\left\langle \underline{y}, \underline{x}\right\rangle\right\| = \left\|\underline{x}\right\|_{p} \left\|\underline{y}\right\|_{q}.$$

- (d) Check that the inequality also holds in the extreme cases $p = 1, q = \infty$ and $p = \infty, q = 1$ (these exponents are dual if we interpret $\frac{1}{\infty} = 0$).
- (e) Show that $\|\underline{x}\|_p = \max\left\{\langle \underline{y}, \underline{x} \rangle : \|\underline{y}\|_q = 1\right\}.$ *Hint*: Choose y_i so that $x_i \overline{y_i} = c |x_i|^p$ for a positive constant c chosen so that $\|\underline{y}\|_q = 1$.
- (f) Show that $\|\underline{x} + \underline{x}'\|_p \le \|\underline{x}\|_p + \|\underline{x}'\|_p$ for all $\underline{x}, \underline{x}'$. *Hint*: $\langle \underline{y}, \underline{x} + \underline{x}' \rangle = \langle \underline{y}, \underline{x} \rangle + \langle y, \underline{x}' \rangle$.
- C. DEF Let $\ell^p = \{\underline{a} \in \mathbb{C}^{\mathbb{N}} \mid \sum_{i=1}^{\infty} |a_i|^p < \infty\}$ (read: "ell-p" be the space of *p*-summable sequences. (a) Use scaling and Minkowski's inequality (for the partial sums of the series) to show that ℓ^p is a subspace of $\mathbb{C}^{\mathbb{N}}$.
 - (b) Show that $\|\underline{a}\|_p = (\sum_{i=1}^{\infty} |a_i|^p)^{1/p}$ is a norm on ℓ^p . (c) Show that $\ell^p \subset \ell^q$ if $p \leq q$.