Lior Silberman's Math 223: Problem Set 10 (due 28/3/2022)

Practice problems

Section 5.1: all problems are suitable Section 5.2: all problems are suitable

Calculation

M1. Find the characteristic polynomial of the following matrices.

(a)
$$\begin{pmatrix} 5 & 7 \\ -3 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} \pi & e \\ \sqrt{7} & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ -a_0 & \cdots & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix}$

M2. For each of the following matrices find its spectrum and a basis for each eigenspace.

(a) $\begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ (b) $\frac{1}{3} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$.

Projections

Fix a vector space V.

- 1. Let $T, T' \in \text{End}(V)$ be similar. Show that $p_T(x) = p_{T'}(x)$. (Hint: show that x Id T, x Id T' are similar)
- 2. Let $T \in \text{End}(V)$.
 - (a) Let $p \in \mathbb{R}[x]$, and let $\underline{v} \in V$ be an eigenvector of T with eigenvalue λ . Show that \underline{v} is an eigenvector of p(T) with eigenvalue $p(\lambda)$.
 - (b) Suppose p(T) = 0. Show that $p(\lambda) = 0$ for all eigenvalues λ of *V*.
 - (c) Show that the only eigenvalue of a nilpotent map is 0.
- 3. Let P ∈ End(V) satisfy P² = P. Such maps are called *projections*.
 (a) Apply problem 2(b) to show that Spec(P) ⊂ {0,1}.
 - REVIEW In the extra credit part of PS5 we showed that the the eigenspaces V_0 and V_1 of a projection span V (we call P the projection *onto* V_1 *along* V_0) and conversely that for any decomposition $V = V_0 \oplus V_1$ there is a unique projection for which these are the eigenspaces.
 - (b) Let $V_0 = \text{Span}\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\} V_1 = \text{Span}\left\{ \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$ so that $\mathbb{R}^3 = V_0 \oplus V_1$ [no need to check this

separately]. Let *P* be the projection onto V_1 along V_0 . Find the matrix of *P* with respect to the *standard* basis of \mathbb{R}^3 .

Hint: By diagonalization
$$P = S \begin{pmatrix} 0 & 1 \\ & 1 \end{pmatrix} S^{-1}$$
 where S is the matrix of eigenvectors.

The Quantum Harmonic Oscillator, I

PRAC In physics a "parity operator" is a map $R \in \text{End}(V)$ such that $R^2 = I$ (we use the shorthand $I = \text{Id}_V$).

RMK This was problem 4, but it is for practice, not for submission.

- (a) Show that $\pm I$ are (uninteresting) parity operators.
- For parts (b)-(d) fix a parity operator R.
- (b) Show that the eigenvalues of *R* are in $\{\pm 1\}$; let V_{\pm} be the corresponding eigenspaces.
- (c) Show that $\frac{I+R}{2}$, $\frac{I-R}{2}$ are the projections onto V_+, V_- along the other subspace, respectively. *Hint:* compute $(I+R)^2$ using that $R^2 = I$.
- (d) Conclude that $V = V_+ \oplus V_-$ and hence that every parity operator is diagonalizable.
- (e) Let *X* be a set and let $\tau: X \to X$ be an *involution*: a map such that $\tau^2 = \operatorname{id}_X$ (identity permutation). Let $R_{\tau} \in \operatorname{End}(\mathbb{R}^X)$ be the linear map $f \mapsto f \circ \tau$. Show that P_{τ} is a parity operator.
- (f) Let $X = \mathbb{R}$, $\tau(x) = -x$. Explain how (b)-(e) relate to the concepts of *odd* and *even* functions.

5. Let
$$V = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x] \right\}$$
 and for $n \ge 1$ let $V_n = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x]^{< n} \right\} \subset V$. Let $H \in C^{\infty}(\mathbb{R})$ be the operator ("quantum Hamiltonian") $H = -D^2 + M$. Concretely we have $Hf = -\frac{d^2f}{d^2} + \frac{d^2f}{d^2}$

 $C^{\infty}(\mathbb{R})$ be the operator ("quantum Hamiltonian") $H = -D^2 + M_{x^2}$. Concretely we have $Hf = -\frac{d}{dx^2} + x^2 f$.

PRAC Show that $V_n \subset V$ are subspaces of $C^{\infty}(\mathbb{R})$, the space of infinitely differentiable functions.

- (a) Show that $HV \subset V$ and $HV_n \subset V_n$.
- (b) Let $H_n = H \upharpoonright_{V_n} \in \text{End}(V_n)$ be the restriction of H to V_n . Show that H_n has an upper-triangular basis with respect to an appropriate basis of V_n and determine its eigenvalues.
- (c) Show that H_n is diagonable.
- (d) Show that HR = RH for the parity operator of 4(f).
- (*e) Show that every eigenfunction of H_n is either even or odd. Which is which?
- (f) Show that $V = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x] \right\}$ has a basis of eigenfunctions of *H*, and that each eigenfunction is either even or odd.

Extra credit: the generalized eigenvalue decomposition and the Cayley-Hamilton Theorem

Fix a vector space *V* and a linear map $T \in \text{End}_F(V)$.

A. DEF For a number λ define the *generalized* λ *-eigenspace* to be the set of vectors $\underline{v} \in V$ killed by some power of $T - \lambda$ (possibly depending on \underline{v}):

$$\tilde{V}_{\lambda} = \left\{ \underline{v} \in V \mid \exists k \colon (T - \lambda)^k \underline{v} = \underline{0} \right\}.$$

- (a) Show that \tilde{V}_{λ} is a subspace containing V_{λ} .
- (b) Show that $\tilde{V}_{\lambda} \neq \{\underline{0}\}$ iff $V_{\lambda} \neq \{\underline{0}\}$ ("every generalized eigenvalue is a regular eigenvalue").
- (c) Show that V_{λ} and \tilde{V}_{λ} are T-invariant: if $\underline{v} \in \tilde{V}_{\lambda}$ then $T \underline{v} \in \tilde{V}_{\lambda}$ as well, and similarly for V_{λ} .
- (d) Let μ ≠ λ. Show that T ↾_{V_λ} -μ ∈ End(V_λ) is injective ("no other eigenvalues in V_λ except λ"). Using a factorization into linear terms conclude that for any polynomial p if p(λ) ≠ 0 then p(T ↾_{V_λ}) ∈ End(V_λ) is injective there.

(**e) Show that $\{\tilde{V}_{\lambda}\}_{\lambda \in \text{Spec}(T)}$ are linearly independent.

COR The sum $\tilde{V} = \bigoplus_{\lambda \in \text{Spec}(T)} \tilde{V}_{\lambda}$ is direct.

B. Continuing the previous problem, suppose now that V is finite-dimensional.

(a) Show that
$$p_{T \upharpoonright_{\tilde{V}_{\lambda}}}(x) = (x - \lambda)^{\dim \tilde{V}_{\lambda}}$$
 and that $\left(T \upharpoonright_{\tilde{V}_{\lambda}} - \lambda\right)^{\dim V_{\lambda}} = 0_{\tilde{V}_{\lambda}}$.

- (b) Let $m(x) = \prod_{\lambda \in \text{Spec}(T)} (x \lambda)^{\dim \tilde{V}_{\lambda}}$. Show that $m(x) = p_{T \upharpoonright \tilde{V}}(x)$ and that $m(T \upharpoonright \tilde{V}) = 0$.
- (c) Suppose that $\tilde{V} \neq V$. Show that setting $\bar{T}(\underline{v} + \tilde{V}) = T\underline{v} + \tilde{V}$ gives a well-defined linear map \bar{T} on the quotient vector space $W = V/\tilde{V}$.
- (d) Let μ be a root of $p_{\bar{T}}(x)$, and let $W_{\mu} \subset W$ be the corresponding eigenspace. Show that $\prod_{\lambda \in \text{Spec}(T) \setminus \{\mu\}} (\bar{T} \lambda)^{\dim \tilde{V}_{\lambda}}$ is an invertible map there. Conclude that if $\underline{v} + \tilde{V} \in W_{\mu}$ with $\underline{v} \notin \tilde{V}$ then $\underline{u} = \prod_{\lambda \in \text{Spec}(T) \setminus \{\mu\}} (T \lambda)^{\dim \tilde{V}_{\lambda}} \underline{v} \notin \tilde{V}$ but $\underline{u} + \tilde{V} \in W_{\mu}$.
- (e) Suppose μ is not an eigenvalue of *T*. Show that $(T \mu)\underline{u} = \underline{0}$, a contradiction to $\underline{u} \notin \tilde{V}$. *Hint*: In this case the polynomial in the definition of \underline{u} is exactly m(T)).
- (f) Suppose μ is an eigenvalue of T. Show that $(T \mu)^{1 + \dim \tilde{V}_{\mu}} \underline{u} = \underline{0}$ showing that $\underline{u} \in \tilde{V}_{\mu} \subset \tilde{V}$, a contradiction.
- C. It follows that $V = \tilde{V}$ so that $T \upharpoonright_{\tilde{V}} = T$. Problem B(b) now gives two corollaries:
 - (a) The algebraic multiplicity of $\lambda \in \text{Spec}(T)$ is equal to $\dim \tilde{V}_{\lambda}$ (and since $V_{\lambda} \subset \tilde{V}_{\lambda}$ we get a new proof that the algebraic multiplicity is at least the geometric multiplicity).
 - (b) (Cayley–Hamilton Theorem) $p_T(T) = 0$.