Lior Silberman's Math 223: Problem Set 9 (due 21/3/2022)

Calculation

M1. Find the eigenvalues and a basis for each eigenspace for the matrices $\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right),\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$.
M2. (Complex numbers)
(a) Compute: $(5+3 i)+(6+7 i),(5+3 i) \cdot(6+7 i), \frac{5+3 i}{6+7 i}\left(\right.$ hint: $\left.\frac{1}{6+7 i}=\frac{6-7 i}{(6+7 i)(6-7 i)}\right)$.
(b) Let $w=a+b i$ be a non-zero complex number. Show that there are two complex solutions to the equation $z^{2}=w$. (Hint: write $z=x+y i$ and get a system of two equations in the unknowns x, y).
(c) Let $a, b, c \in \mathbb{C}$ with $a \neq 0$. Show that the polynomial $a z^{2}+b z+c \in \mathbb{C}[z]$ factors as a product of linear polynomials. (Hint: use the quadratic formula)

Three determinants

Hint for 1,2,3: if you aren't sure try what happens with small matrices $(2 \times 2,3 \times 3,4 \times 4,5 \times 5)$ before tackling the general case.

1. Fix numbers a, b and let T_{n} be the matrix with entries $t_{i j}$ so that for all $i, t_{i i}=a, t_{i,(i-1)}=t_{i,(i+1)}=b$ and $t_{i j}=0$ otherwise.
(a) For $n \geq 1$ use row and column expansion to show that $\operatorname{det} T_{n+2}=a\left(\operatorname{det} T_{n+1}\right)-b^{2}\left(\operatorname{det} T_{n}\right)$.
(b) Using the method of problem 5 below solve the recursion in the case $a=5, b=2$ and find a closed-form expression for $\operatorname{det} T_{n}$ in this case.
2. Let $H_{n}\left(d_{1}, \cdots, d_{n}\right)$ be the matrix $J_{n}+\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ where J_{n} is the all-ones matrix and let $h_{n}\left(d_{1}, \cdots, d_{n}\right)=$ $\operatorname{det}\left[H_{n}\left(d_{1}, \cdots, d_{n}\right)\right]$.
(a) Show that $h_{n}\left(0, d_{2}, \ldots, d_{n}\right)=\prod_{j=2}^{n} d_{j}$. (Hint: subtract the second row from the first)
(b) Suppose that $n \geq 2$. Show that $h_{n}\left(d_{1}, d_{2}, \ldots, d_{n}\right)=d_{1} h_{n-1}\left(d_{2}, \ldots, d_{n}\right)+d_{2} h_{n-1}\left(0, d_{3}, \ldots, d_{n}\right)$.
(c) Suppose that all the $d_{i} \neq 0$ and that $n \geq 2$. Show that $\frac{h_{n}\left(d_{1}, \ldots, d_{n}\right)}{\prod_{j=1}^{j} d_{j}}=\frac{h_{n-1}\left(d_{2}, \ldots, d_{n}\right)}{\prod_{j=2}^{n} d_{j}}+\frac{1}{d_{1}}$.
(d) Show that $\frac{h_{2}\left(d_{1}, d_{2}\right)}{d_{1} d_{2}}=\frac{1}{d_{1}}+\frac{1}{d_{2}}+1$, and thus that $\frac{h_{n}\left(d_{1}, \ldots, d_{n}\right)}{\prod_{j=1}^{n} d_{j}}=\sum_{j=1}^{n} \frac{1}{d_{j}}+1$.

CONCLUSION $h_{n}\left(d_{1}, \ldots, d_{n}\right)=\left(\sum_{j=1}^{n} \frac{1}{d_{j}}+1\right)\left(\prod_{j=1}^{n} d_{j}\right)$.
3. (The "Vandermonde determinant") Let x_{i} be variables and let $V_{n}\left(x_{1}, \ldots, x_{n}\right)$ be the $n \times n$ matrix with entries $v_{i j}=x_{i}^{j-1}$. We show that $\operatorname{det} V_{n}=\prod_{i=2}^{n} \prod_{j=1}^{i-1}\left(x_{i}-x_{j}\right)$.
(a) Show that $\operatorname{det} V_{n}$ is a polynomial in x_{1}, \ldots, x_{n} of total degree $0+1+2+3+\cdots+(n-1)=\frac{n(n-1)}{2}$.
(b) Show that $\operatorname{det} V_{n}$ vanishes whenver $x_{i}=x_{j}$ (which leads you to suspect that $x_{i}-x_{j}$ divides the polynomial).
RMK Note that $\prod_{i=2}^{n} \prod_{j=1}^{i-1}\left(x_{i}-x_{j}\right)$ is a polynomial of total degree $\frac{n(n-1)}{2}$. It follows from (a) and the theory of polynomial rings over integral domains that $\prod_{i=2}^{n} \prod_{j=1}^{i-1}\left(x_{i}-x_{j}\right)$ actually does divide the determinant, and comparing degrees of the two it follows that the quotient has degree zero, that is that for some constant $c_{n} \in \mathbb{Z}, \operatorname{det} V_{n}=c_{n} \prod_{i=2}^{n} \prod_{j=1}^{i}\left(x_{i}-x_{j}\right)$. In the rest of the problem we prove this formula without this theory.
SUPP Examining the coefficient of $x_{1}^{0} x_{2}^{1} x_{3}^{2} \cdots x_{n}^{n-1}$ show that $c_{n}=1$.
(c) Let $V_{n+1}\left(x_{1}, \ldots, x_{n+1}\right)$ be the matrix described above, and let W_{n+1} be the matrix obtained by
(i) Subtracting the first row from each row; and then
(ii) For j descending from $n+1$ to 2 , subtracting from the j th column a multiple of the $(j-1)$ st so as to make the top entry in the column zero.
Let $\left(w_{i j}\right)_{i, j=1}^{n+1}$ be the entries of W_{n+1}. Show that $w_{11}=1$ that $w_{1 j}=w_{i 1}=0$ if $i, j \neq 1$ and that $w_{i j}=\left(x_{i}-x_{1}\right) v_{i, j-1}$ if $i, j \geq 2$.
(d) Show that $\operatorname{det} V_{n+1}=\left[\prod_{i=2}^{n+1}\left(x_{i}-x_{1}\right)\right] \cdot\left[\operatorname{det} V_{n}\left(x_{2}, \ldots, x_{n+1}\right)\right]$.
(e) Check that $\operatorname{det} V_{1}=1$ and prove the main claim by induction.

SUPP (Polynomial interpolation) Let $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k} \subset \mathbb{R}^{2}$ be points in the plane with distinct x_{i}. Show that there exists a unique polynomial $p \in \mathbb{R}[x]^{<k}$ such that $p\left(x_{i}\right)=y_{i}$.

Linear recurrences

4. Let $T \in \operatorname{End}(V)$ and let $\underline{v} \in V$ satisfy $T \underline{v}=\lambda \underline{v}$.
(a) Show that $T^{n} \underline{v}=\lambda^{n} \underline{v}$ for all $n \geq 0$.
(b) Suppose that T is invertible and $\underline{v} \neq 0$. Show that $\lambda \neq 0$ and that $T^{-n} \underline{v}=\lambda^{-n} \underline{v}$.
(c) Let $p \in \mathbb{R}[x]$ be a polynomial of degree n. Show that $p(T) \underline{v}=p(\lambda) \underline{v}$, where $p(T)$ is the linear map defined in the supplement to PS6.
5. A sequence $\underline{F} \in \mathbb{C}^{\mathbb{N}}$ satisfies a recurrence relation of degree k if we have coefficients c_{0}, \ldots, c_{k-1} with $c_{0} \neq 0$ such that $F_{n+k}=\sum_{i=0}^{k-1} c_{i} F_{n+i}$ for all $n \geq 0$. In that case let $p(x)=x^{k}-\sum_{i=0}^{k-1} c_{i} x^{i}$ be the characteristic polynomial of the recursion relation.
(a) Explain why we assume $c_{0} \neq 0$.
(b) Show that \underline{F} satisfies the recurrence relation iff $p(L) \underline{F}=\underline{0}$, where $L \in \operatorname{End}\left(\mathbb{R}^{\infty}\right)$ is the left shift.

RMK In other words, we show that the set of solutions to the recurrence relation is the kernel of a linear map.
(c) Show that any solution is determined by its initial values $\left(F_{0}, F_{1}, \ldots, F_{k-1}\right)$. Conclude that $\operatorname{Ker}(p(L))$ is k-dimensional.
(d) Suppose that r is a root of $p(x)$. Show that the sequence $\left(r^{n}\right)_{n \geq 0}$ is in $\operatorname{Ker}(p(L))$ (i.e. that it satisfies the recursion relation) and that it is non-zero.
FACT A set of (non-zero) eigenvectors corresponding to distinct eigenvalues is linearly independent.
ASSUME for the rest of the problem that $p(x)$ has k distinct roots $\left\{r_{i}\right\}_{i=1}^{k}$.
(e) Find a basis for $\operatorname{Ker}(p(L))$.
(f) Let $\left(F_{0}, F_{1}, \ldots, F_{k-1}\right)$ be any numbers. Show that the system of k equations $\sum_{i=0}^{k-1} A_{i} r_{i}^{j}=F_{j}(1 \leq$ $j \leq k)$ in the unknowns A_{i} has a unique solution. (Hint: problem 3)
SUPP Show (without using the assumption) for any recurrence relation of degree k, any initial k tuple of values extends to a unique solution of the recurrence relation.

Extra Credit: Practice with Incidence geometry

An incidence structure is a triple (P, L, \in) where P is a set (its elements are called points), L is a set (its elements are called "lines"), and \in is an (arbitrary) relation between the sets P, L called "incidence". We interpret the situation $p \in \ell$ as "the point p lies on the line ℓ " (is incident to it) and $p \notin \ell$ to be the reverse sitaution. We always assume that P, L are finite. The incidence structure is a linear space if we add the axiom "for any two distinct points $p \neq p^{\prime}$ there is a unique line ℓ such that $p \in \ell$ and $p^{\prime} \in \ell$.

Our goal is to prove
ThEOREM (De Bruin-Erdős). Let (P, L, \in) be an linear space for which not all points are on the same line. Then there are at least as many lines as points.
*C1. Let (P, L, \in) be a linear space.
(a) Suppose that for some point p there is only one line containing p. Show that this line contains all points.
DEF Let $T: \mathbb{R}^{P} \rightarrow \mathbb{R}^{L}, S: \mathbb{R}^{L} \rightarrow \mathbb{R}^{P}$ be the maps $(T f)(\ell)=\sum_{p \in \ell} f(p)$ (sum over points on ℓ) and $(S g)(p)=\sum_{p \in \ell} g(\ell)$ (sum over lines containing p).
(b) Show that T, S are linear.
(c) Suppose that $P=\left\{p_{i}\right\}_{i=1}^{n}$ is finite. Show that the matrix of $S T$ in the "standard basis" of \mathbb{R}^{P} (the i th basis vector is the function which is 1 at p_{i}, zero elsewhere) is $J_{n}+\operatorname{diag}\left(d_{1}-1, \ldots, d_{n}-1\right)$ where J_{n} is the all-ones matrix and d_{i} is the number of lines through p_{i}.
(d) Suppose that not all points are on the same line. Show that $\operatorname{det}(S T)>0$.
(e) Prove the Theorem.

C2. Suppose that we add the axiom "every two distinct lines intersect at exactly one point".
(a) Show that in this case exchanging the role of points and lines (and the adjusting the relation appropriately) gives a new incidence structure (the "dual one") which also satisfies both the linear space axiom and the axiom we just introduced.
(b) Conclude that with the extra axiom there only three possibilities: (1) there is exactly one line and it contains all the points; (2) there is exactly one point and it lies on all lines; (3) there are as many lines as points

Supplementary problem: Quadratic extensions in general

A (Constructing quadratic fields) Let F be a field, $d \in F$ such that $x^{2}=d$ has no solutions in F.
(a) Show that the set of matrices $E=\left\{\left.\left(\begin{array}{cc}a & b \\ d b & a\end{array}\right) \right\rvert\, a, b \in F\right\}$ is a two-dimensional F-subspace of $M_{2}(F)$ with basis $1, \varepsilon$, where $\varepsilon=\left(d^{1}\right)$ satisfies $\varepsilon^{2}=d$.
(b) Show that E is also closed under matrix multiplication and that $x y=y x$ for all $x, y \in E$.
(c) Show that the unique F-linear map $\sigma: E \rightarrow E$ given by $\sigma\left(I_{2}\right)=I_{2}, \sigma(\varepsilon)=-\varepsilon$, satisfies $\sigma(x y)=$ $\sigma(x) \sigma(y)$ for all $x, y \in E$.
(d) Show that the norm $N z=z \sigma(z)$ satisfies $N z \in F$ for all $z \in E, N z \neq 0$ iff $z \neq 0, N(z w)=N z N w$.
(e) Conclud that E is a field.
B. (Uniqueness) Let E^{\prime} be a field containing F which is two-dimensional over F.
(a) Suppose E^{\prime} is spanned over F by elements $1, \varepsilon$ with $\varepsilon^{2}=d$. Let $z=a+b \sqrt{d} \in E^{\prime}$ be any element and let $M_{z}: E^{\prime} \rightarrow E^{\prime}$ be the map of multiplication by z. Show that M_{z} is F-linear and that its matrix in the basis $\{1, \varepsilon\}$ is $\left(\begin{array}{cc}a & b \\ d b & a\end{array}\right)$.
(b) Show that E always has a basis of the form $\{1, \delta\}$ with $\delta \notin F$. Show that if char $F \neq 2$ there is $\varepsilon=a+b \delta$ such that $\varepsilon^{2} \in F$.
(c) Show that $E=F(\sqrt{d})$ and $E^{\prime}=F\left(\sqrt{d^{\prime}}\right)$ are isomorphic as fields iff $\frac{d}{d^{\prime}}$ is a square in F.

