Lior Silberman's Math 223: Problem Set 8 (due 14/3/2022)

Practice problems

Section 4.1, Problems 1-8. Section 4.2, Problems 1-23 (don't do all of them!)

The determinant of the transpose

- 1. For a matrix $A \in M_{n,m}(\mathbb{R})$ the *transpose* of A is the matrix $A^t \in M_{m,n}(\mathbb{R})$ such that $(A^t)_{ii} = A_{ji}$.
 - (a) Show that the map $A \mapsto A^t$ is linear map and that $(A^t)^t = A$.
 - (b) Let *A*, *B* be matrices for which the product *AB* makes sense. Then the product $B^t A^t$ makes sense and $(AB)^t = B^t A^t$.
- 2. (Elementary matrices) In class we showed that if A is triangular then det $A = \prod_{i=1}^{n} a_{ii}$.
 - (a) Use this to compute the determinant of the elementary matrices $I_n + cE^{ij}$ and diag (a_1, \ldots, a_n) (the diagonal matrix with these values on the diagonal).
 - (b) Show that if *E* is an elementary matrix or in row echelon form then $det(A^t) = det A$.
- *3. Recall the structure theorem of Gaussian elimination: every $A \in M_n(\mathbb{R})$ can be written in the form $A = E_r \cdots E_2 \cdot E_1 \cdot B$ where E_i are elementary and B is in row echelon form. Show that $\det A^t = \det A$ (hint: induction over r).

Some explicit determinants

4. (Vandermonde I) Calculate the following determinants using the definition $V_2(x_1, x_2) = \begin{vmatrix} 1 & x_1 \\ 1 & x_2 \end{vmatrix}$,

 $V_3(x_1, x_2, x_3) = \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix}$. Write your answer as a product of linear factors (in other words, factor the polynomials completely).

- 5. (Tridiagonal I) Calculate the determinants $\begin{vmatrix} a & b \\ b & a \end{vmatrix}$, $\begin{vmatrix} a & b & 0 \\ b & a & b \\ 0 & b & a \end{vmatrix}$, $\begin{vmatrix} a & b & 0 & 0 \\ b & a & b & 0 \\ 0 & b & a & b \\ 0 & 0 & b & a \end{vmatrix}$.
- PRAC Can you guess a formula for $V_n(x_1,...,x_n)$, the determinat of the matrix A such that $A_{ij} = x_i^{j-1}$? We will compute the $n \times n$ determinants generalizing 5,6 in the next problem set.

Supplement 1: The Fibbonacci sequence, again

Recall our notation $\mathbb{R}^{\infty} = \mathbb{R}^{\mathbb{N}}$ for the space of sequences, and let $L, R \in \text{End}(\mathbb{R}^{\infty})$ be the "shift left" and "shift right" maps:

$$L(a_0, a_1, a_2, \ldots) = (a_1, a_2, \ldots)$$

$$R(a_0, a_1, a_2, \ldots) = (0, a_0, a_1, a_2, \ldots)$$

that is,

$$(L\underline{a})_n = a_{n+1}$$

$$(R\underline{a})_n = \begin{cases} 0 & n=0\\ a_{n-1} & n \ge 1 \end{cases}$$

A. (Basics)

- (a) Find the kernel and image of L, concluding that it is surjective but not injective.
- (b) Find the kernel and image of R, concluding that it is injective but not surjective.
- (c) Show that LR = Id but that $RL \neq LR$.
- B. Let F_n be the sequence defined by $F_0 = a$, $F_1 = b$ and $F_{n+2} = F_{n+1} + F_n$ for all $n \ge 0$. (a) Show that $(L^2 - L - 1) \underline{F} = \underline{0}$.
 - (b) Show that the map Φ : Ker $(L^2 L 1) \to \mathbb{R}^2$ given by $\Phi(\underline{F}) = \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$ is an isomorphism of vector spaces.

**C. Show that the set $\{R^k L^l \mid k, l \ge 1\} \subset \text{End}(\mathbb{R}^{\infty})$ is linearly independent.

Supplement 2: Complex numbers

D. Let $\mathbb{C} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\} \subset M_2(\mathbb{R})$. We will denote elements of \mathbb{C} by lower-case letters like z, w.

- (a) Show that \mathbb{C} is a subspace of $M_2(\mathbb{R})$. Conclude, in particular, that addition in \mathbb{C} satisfies all the usual axioms.
- (b) Show that \mathbb{C} is closed under multiplication of matrices, that $I_2 \in \mathbb{C}$ and that zw = wz for any $z, w \in \mathbb{C}$. It follows that multiplication in \mathbb{C} is associative, commutative, has an identity, and is distributive over addition.
- (c) Use PS5 problem 3 to show that every non-zero $z \in \mathbb{C}$ is invertible and derive a formula for the inverse.
- DEF A set equipped with an addition and a multiplication operations which are commutative, associative, and have neutral elements, satisfying the distributive law and such tha every elemenent has an additive inverse, and every non-zero element has a multiplicative inverse, is called a *field*.
- RMK The field \mathbb{C} constructed above contains a copy of \mathbb{R} indeed by PS7 problem 3 (practice part) the identification $a \leftrightarrow \begin{pmatrix} a \\ a \end{pmatrix}$ respects addition and multiplication of real numbers; we do this from now on. [In fact, we already agreed to identify the number *a* with the linear map of multiplication by *a*].

- (d) Let $i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathbb{C}$. Show that $i^2 = -1$ (note that $1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$) and that that every element of \mathbb{C} can be uniquely written in the form a + bi for some $a, b \in \mathbb{R}$ (hint: your answer should use the word "basis")
- DEF From now on if asked to calculate a complex number write it in the form a + bi. Do NOT use the cumbersome specific realization of parts (a)-(d).
- RMK Really try to forget the specific construction of parts (a)-(d) and only work in terms of the basis $\{1, i\}$. In particular, note that (a+bi)(c+di) = (ac-bd) + (ad+bc)i - you showed this for (b), but it also follows from the applying the distributive law and other laws of arithmetic and at some point using $i^2 = -1$.
- (e) Calculate (1+2i) + (3+7i), $(1+2i) \cdot (3+7i)$, $\frac{7+3i}{1+2i}$ (hint: division means multiplication by the inverse!)

EXAMPLE
$$(5-2i) \cdot (1+i) = 5 \cdot (1+i) + (-2i)(1+i) = 5 + 5i - 2i - 2i \cdot i = 5 + 3i - 2 \cdot (-1) = 7 + 3i$$
.

E. (Inverting complex numbers using the norm)

DEF The complex conjugate of $z \in \mathbb{C}$ is the number \overline{z} represented by the matrix z^t .

- (a) Use problem 3 to show $\overline{z+w} = \overline{z} + \overline{w}$ and $\overline{zw} = \overline{zw}$. Also check that $\overline{a+bi} = a-bi$ and use this to give an alternate proof of the claims.
- (b) Show that $z\overline{z}$ is a non-negative real for all $z \in \mathbb{C}$ (again we identify $a \in \mathbb{R}$ with the matrix aI_2), and that $z\overline{z} = 0$ iff z = 0. Conclude $z \neq 0$ then $z \cdot \frac{\overline{z}}{\overline{z}} = 1$, a variant of the proof of A(c).

DEF The *norm* of $z\bar{z}$ is defined to be $|z| \stackrel{\text{def}}{=} \sqrt{z\bar{z}}$.

- (c) Show that |zw| = |z| |w|. (Hint: this is easy using part (a) of this problem).
- (d) Show that $\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$.

F. (Linear algebra over the complex numbers)

- DEF A complex vector space is a triple $(V, +, \cdot)$ satisfying the usual axioms except that multiplication is by complex rather than real numbers.
- DEF \mathbb{C}^X is the space of C-valued functions on the set X. This is a complex vector space under pointwise operations (review the definition of \mathbb{R}^X). In particular, \mathbb{C}^n is the space of *n*-tuples.
- FACT Everything we proved about real vector spaces is true for complex vector spaces. For example, the standard basis $\{\underline{e}_k\}_{k=1}^n \subset \mathbb{C}^n$ is still a basis. We use $\dim_{\mathbb{C}} V$ to denote the dimension of a complex vector space, and when needed $\dim_{\mathbb{R}} V$ to denote the dimension of a real vector space.
- (a) In the vector space \mathbb{C}^2 calculate $(1+2i) \cdot \begin{pmatrix} i \\ 3-7i \end{pmatrix}$. Show that $\left\{ \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ -i \end{pmatrix} \right\}$ form a

basis for \mathbb{C}^2 . (b) Show that $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} i \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ i \end{pmatrix} \right\} \subset \mathbb{C}^2$ are linearly independent *over* \mathbb{R} [that is: if a linear combination with real coefficients is zero, then the coefficients are zero]. RMK Since $\begin{pmatrix} a+bi \\ c+di \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} i \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 1 \end{pmatrix} + d \begin{pmatrix} 0 \\ i \end{pmatrix}$ this set is also spanning,

$$\begin{cases} 5x + iy + (1+i)z &= 1\\ 2y + iz &= 2\\ -ix + (3-i)y &= i \end{cases}$$

Supplement 3: computational complexity

- G. (Inefficiency of minor expansion) Suppose that the "minor expansion along first row" algorithm for evaluating determinants requires T_n multiplications to evaluate an $n \times n$ determinant.
 - (a) Show that $T_1 = 0$ and that $T_{n+1} = (n+1)(T_n+1)$.

 - (b) Show that for $n \ge 2$ one has $T_n = n! \left(\sum_{j=2}^n \frac{1}{j!}\right)$ (c) Conclude that $\frac{1}{2}n! \le T_n \le (e-2) \cdot n!$ for all $n \ge 2$.